Yuya Cui, Degan Zhang, Jie Zhang, Ting Zhang, Lixiang Cao, Lu Chen
{"title":"Multi-user reinforcement learning based task migration in mobile edge computing","authors":"Yuya Cui, Degan Zhang, Jie Zhang, Ting Zhang, Lixiang Cao, Lu Chen","doi":"10.1007/s11704-023-1346-3","DOIUrl":null,"url":null,"abstract":"<p>Mobile Edge Computing (MEC) is a promising approach. Dynamic service migration is a key technology in MEC. In order to maintain the continuity of services in a dynamic environment, mobile users need to migrate tasks between multiple servers in real time. Due to the uncertainty of movement, frequent migration will increase delays and costs and non-migration will lead to service interruption. Therefore, it is very challenging to design an optimal migration strategy. In this paper, we investigate the multi-user task migration problem in a dynamic environment and minimizes the average service delay while meeting the migration cost. In order to optimize the service delay and migration cost, we propose an adaptive weight deep deterministic policy gradient (AWDDPG) algorithm. And distributed execution and centralized training are adopted to solve the high-dimensional problem. Experiments show that the proposed algorithm can greatly reduce the migration cost and service delay compared with the other related algorithms.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"67 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-1346-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile Edge Computing (MEC) is a promising approach. Dynamic service migration is a key technology in MEC. In order to maintain the continuity of services in a dynamic environment, mobile users need to migrate tasks between multiple servers in real time. Due to the uncertainty of movement, frequent migration will increase delays and costs and non-migration will lead to service interruption. Therefore, it is very challenging to design an optimal migration strategy. In this paper, we investigate the multi-user task migration problem in a dynamic environment and minimizes the average service delay while meeting the migration cost. In order to optimize the service delay and migration cost, we propose an adaptive weight deep deterministic policy gradient (AWDDPG) algorithm. And distributed execution and centralized training are adopted to solve the high-dimensional problem. Experiments show that the proposed algorithm can greatly reduce the migration cost and service delay compared with the other related algorithms.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.