Axioms for a theory of signature bases

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Pierre Lairez
{"title":"Axioms for a theory of signature bases","authors":"Pierre Lairez","doi":"10.1016/j.jsc.2023.102275","DOIUrl":null,"url":null,"abstract":"<div><p><span>Twenty years after the discovery of the F5 algorithm, Gröbner bases with signatures are still challenging to understand and to adapt to different settings. This contrasts with Buchberger's algorithm, which we can bend in many directions keeping correctness and termination obvious. I propose an axiomatic approach to Gröbner bases with signatures with the purpose of uncoupling the theory and the algorithms, giving general results applicable in many different settings (e.g. Gröbner for </span>submodules, F4-style reduction, noncommutative rings, non-Noetherian settings, etc.), and extending the reach of signature algorithms.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000895","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Twenty years after the discovery of the F5 algorithm, Gröbner bases with signatures are still challenging to understand and to adapt to different settings. This contrasts with Buchberger's algorithm, which we can bend in many directions keeping correctness and termination obvious. I propose an axiomatic approach to Gröbner bases with signatures with the purpose of uncoupling the theory and the algorithms, giving general results applicable in many different settings (e.g. Gröbner for submodules, F4-style reduction, noncommutative rings, non-Noetherian settings, etc.), and extending the reach of signature algorithms.

签名基础理论的公理
在发现 F5 算法 20 年后的今天,带有签名的格罗布纳基仍然难以理解,也难以适应不同的环境。这与布赫伯格算法形成了鲜明对比,布赫伯格算法的正确性和终止性显而易见,我们可以对其进行多向弯曲。我提出了一种带签名的格罗伯纳基的公理化方法,目的是解除理论与算法之间的耦合,给出适用于许多不同环境(如子模的格罗伯纳、F4 式还原、非交换环、非诺特环境等)的一般结果,并扩展签名算法的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信