Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat","authors":"","doi":"10.1007/s10577-023-09745-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-023-09745-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.

对新合成的异源四倍体小麦二倍体遗传的细胞学分析
摘要 多倍体化是一个与物种杂交和全基因组复制有关的过程。它广泛存在于被子植物的进化过程中,对物种的分化和多样化至关重要。异源多倍体主要来源于种间杂交,被认为是减数分裂不规则造成的染色体不平衡和基因组不稳定。然而,野生自然界中的自交异源多倍体在细胞遗传和基因上是稳定的。至于这种稳定形式是在最初一代实现的,还是长期进化的结果,目前还不得而知。在这里,我们从 A、S* 和 D 三个二倍体基因组中合成了一系列新生的异源四倍体小麦,发现这些新形成的异源四倍体小麦植株的大多数后代的染色体数目相对一致,每个基因组包含 14 条染色体。在减数分裂过程中,二价体是分裂后期 I 的大多数染色体构型,这支持了新生异源四倍体稳定的染色体数目遗传。这些发现表明,在新形成的合成异源四倍体小麦中发生了二倍体化。然而,我们仍然在一部分新形成的异源四倍体小麦中检测到了非整倍体,而且这些材料的减数分裂比优倍体呈现出更不规则的染色体行为。我们发现,非整倍体中减数分裂的中心粒配对和中心粒聚类受到影响,这表明非整倍体可能引发减数分裂早期中心粒的不规则相互作用,从而参与促进新形成的异源四倍体小麦减数分裂的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信