{"title":"Music, cells and the dimensionality of nature","authors":"Mark William Johnson","doi":"10.1016/j.pbiomolbio.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>One of the foundational principles of recent developments in evolutionary biology has been the acknowledgement of homeostasis as an organising principle of cellular development from unicellular origins. Fundamentally, this concerns the balance between the inside of a biological entity and its environment. Given that the organ of balance is the ear, and that the evolutionary provenance of the vestibular system can be traced back to fish, music provides a rich foundation for evolutionary biological inquiry.</p><p>This paper considers a specific dimensional relationship in sonic experience between noise, signal, redundancy and anticipation. Drawing on the physics of Bohm and more recent developments in Rowlands's nilpotent quantum mechanics, I argue that the relationship between these four parameters is not only that they represent aspects of sonic experience, but that they are dimensionally distinct, where noise can be considered to be scalar, a signal (or a note) is a vector (having magnitude and direction), redundancy is bi-vectorial (involving degrees of repetition of signals over time), and anticipation is tri-vectorial (involving reflexive consideration of different orders of redundancy).</p><p>In outlining the dimensional distinction between these variables, an analysis is presented which considers the relationship between the Shannon entropy of different dimensions in music. This shows that the entropy of noise has a particular bearing on the entropy of the other dimensions. This dimensional relation is also reflected in biological evidence, where Torday has shown there to be a direct correlation between the effect of gravitational “noise” on cellular communication, and by extension the evolution of consciousness.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079610723000998/pdfft?md5=e9bf1dc746203ee7b15e2a2924e24167&pid=1-s2.0-S0079610723000998-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079610723000998","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
One of the foundational principles of recent developments in evolutionary biology has been the acknowledgement of homeostasis as an organising principle of cellular development from unicellular origins. Fundamentally, this concerns the balance between the inside of a biological entity and its environment. Given that the organ of balance is the ear, and that the evolutionary provenance of the vestibular system can be traced back to fish, music provides a rich foundation for evolutionary biological inquiry.
This paper considers a specific dimensional relationship in sonic experience between noise, signal, redundancy and anticipation. Drawing on the physics of Bohm and more recent developments in Rowlands's nilpotent quantum mechanics, I argue that the relationship between these four parameters is not only that they represent aspects of sonic experience, but that they are dimensionally distinct, where noise can be considered to be scalar, a signal (or a note) is a vector (having magnitude and direction), redundancy is bi-vectorial (involving degrees of repetition of signals over time), and anticipation is tri-vectorial (involving reflexive consideration of different orders of redundancy).
In outlining the dimensional distinction between these variables, an analysis is presented which considers the relationship between the Shannon entropy of different dimensions in music. This shows that the entropy of noise has a particular bearing on the entropy of the other dimensions. This dimensional relation is also reflected in biological evidence, where Torday has shown there to be a direct correlation between the effect of gravitational “noise” on cellular communication, and by extension the evolution of consciousness.