Electromagnetic Current Operators for Phenomenological Relativistic Models

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
W. N. Polyzou
{"title":"Electromagnetic Current Operators for Phenomenological Relativistic Models","authors":"W. N. Polyzou","doi":"10.1007/s00601-023-01871-4","DOIUrl":null,"url":null,"abstract":"<div><p>Phenomenological Poincaré invariant quantum mechanical models can provide an efficient description of the dynamics of strongly interacting particles that is frame independent and consistent with spectral and scattering observables. These models are representation dependent and in order to apply them to reactions with electromagnetic probes it is necessary to use a consistent electromagnetic current operator. The purpose of this work is to use local gauge invariance to construct consistent strong current operators. Current operators are constructed from a model Hamiltonian by replacing momentum operators in the Weyl representation by gauge covariant derivatives. The construction provides a systematic method to construct expressions for current operators that are consistent with relativistic models of strong interaction dynamics.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-023-01871-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phenomenological Poincaré invariant quantum mechanical models can provide an efficient description of the dynamics of strongly interacting particles that is frame independent and consistent with spectral and scattering observables. These models are representation dependent and in order to apply them to reactions with electromagnetic probes it is necessary to use a consistent electromagnetic current operator. The purpose of this work is to use local gauge invariance to construct consistent strong current operators. Current operators are constructed from a model Hamiltonian by replacing momentum operators in the Weyl representation by gauge covariant derivatives. The construction provides a systematic method to construct expressions for current operators that are consistent with relativistic models of strong interaction dynamics.

现象学相对论模型的电磁电流算子
现象学庞加莱不变量子力学模型可以有效地描述强相互作用粒子的动力学,这种描述与框架无关,并且与光谱和散射观测值一致。这些模型与表征相关,为了将它们应用于电磁探测反应,必须使用一致的电磁电流算子。这项工作的目的是利用局部量规不变性来构造一致的强电流算子。电流算子由模型哈密顿构造而成,方法是用轨则协变导数取代韦尔表示中的动量算子。这种构造为构造与强相互作用动力学相对论模型一致的电流算子表达式提供了一种系统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信