Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review

IF 5.7 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Damodar Hegde, Baranya Shrikrishna Suprabha, Arathi Rao
{"title":"Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review","authors":"Damodar Hegde,&nbsp;Baranya Shrikrishna Suprabha,&nbsp;Arathi Rao","doi":"10.1016/j.jdsr.2023.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.</p></div>","PeriodicalId":51334,"journal":{"name":"Japanese Dental Science Review","volume":"60 ","pages":"Pages 22-31"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S188276162300042X/pdfft?md5=a254c72246f0faeab6d1aeca51bd24d3&pid=1-s2.0-S188276162300042X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Dental Science Review","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S188276162300042X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.

用于无创修复治疗的高粘度玻璃离子粘结剂的有机抗菌改性:综述
高粘度玻璃离子水泥(HVGIC)已被用作创伤性修复治疗(ART)的修复材料。在无创修复治疗中,由于龋齿去除后仍有残留,因此 HVGIC 的抗菌活性显得尤为重要。多年来,具有抗菌特性的有机和无机物质已被加入到 HVGIC 中,并对它们对抗菌和物理特性的影响进行了研究。本文旨在回顾使用有机化合物对 HVGIC 所做的各种改变及其对抗菌活性和水泥物理性能的影响。通过添加防腐剂、抗生素和天然抗菌物质进行了各种体外研究。其中大多数化合物的抗菌性能都优于 HVGIC,但浓度越高,物理性能受到的影响也就越大。不过,一些天然抗菌物质(如壳聚糖)可改善 HVGIC 的物理性质,因为它们能增强交联和多盐桥接。在 HVGIC 中添加有机抗菌化合物有可能为临床带来益处。需要进行深入研究,以确定在不影响水泥物理性能的情况下抗菌效果最大的最佳浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Japanese Dental Science Review
Japanese Dental Science Review DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
9.90
自引率
1.50%
发文量
31
审稿时长
32 days
期刊介绍: The Japanese Dental Science Review is published by the Japanese Association for Dental Science aiming to introduce the modern aspects of the dental basic and clinical sciences in Japan, and to share and discuss the update information with foreign researchers and dentists for further development of dentistry. In principle, papers are written and submitted on the invitation of one of the Editors, although the Editors would be glad to receive suggestions. Proposals for review articles should be sent by the authors to one of the Editors by e-mail. All submitted papers are subject to the peer- refereeing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信