{"title":"Sound reduces saccadic chronostasis illusion","authors":"Mengdie Zhai , Hongxiao Wu , Yajie Wang , Yu Liao , Wenfeng Feng","doi":"10.1016/j.visres.2023.108344","DOIUrl":null,"url":null,"abstract":"<div><p>The saccadic chronostasis illusion refers to the duration overestimation of the first visual stimulation after saccadic eye movement, which is also known as “stopped clock illusion.” The present study investigated whether saccadic chronostasis would be observed in the auditory modality and whether the saccade-induced time dilation in the visual modality would be reduced by a synchronously presented sound. In each trial, a unisensory visual stimulus, unisensory sound, or bimodal audio-visual stimulus with a duration of 200–800 ms (probe stimulus) was presented at the saccade target location and temporally around the offset of the saccade, followed by a unisensory visual or auditory standard stimulus for a fixed 500 ms. Participants were required to identify which of the two stimuli (probe or standard) presented in the target modality (visual or auditory) was perceived as longer. The results showed that no saccadic chronostasis was observed in the auditory modality, regardless of whether the sound was presented alone or synchronously accompanied by a visual stimulus. Interestingly, the magnitude of the saccadic chronostasis illusion was reduced by the synchronously presented sound. Moreover, the combined effect of the saccade and sound on visual time perception fits well with the standard scalar model, and the weight of the cross-modal effect was higher than that of saccadic visual time dilation. These results suggest that sound dominates vision in time processing during saccades and linearly modulates saccadic chronostasis, which follows the Scalar Expectancy Theory.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698923001682","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The saccadic chronostasis illusion refers to the duration overestimation of the first visual stimulation after saccadic eye movement, which is also known as “stopped clock illusion.” The present study investigated whether saccadic chronostasis would be observed in the auditory modality and whether the saccade-induced time dilation in the visual modality would be reduced by a synchronously presented sound. In each trial, a unisensory visual stimulus, unisensory sound, or bimodal audio-visual stimulus with a duration of 200–800 ms (probe stimulus) was presented at the saccade target location and temporally around the offset of the saccade, followed by a unisensory visual or auditory standard stimulus for a fixed 500 ms. Participants were required to identify which of the two stimuli (probe or standard) presented in the target modality (visual or auditory) was perceived as longer. The results showed that no saccadic chronostasis was observed in the auditory modality, regardless of whether the sound was presented alone or synchronously accompanied by a visual stimulus. Interestingly, the magnitude of the saccadic chronostasis illusion was reduced by the synchronously presented sound. Moreover, the combined effect of the saccade and sound on visual time perception fits well with the standard scalar model, and the weight of the cross-modal effect was higher than that of saccadic visual time dilation. These results suggest that sound dominates vision in time processing during saccades and linearly modulates saccadic chronostasis, which follows the Scalar Expectancy Theory.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.