Spherical seepage model of Bingham fluid in rough and low-permeability porous media

IF 1.3 4区 工程技术 Q3 MECHANICS
Shanshan Yang, Ke Zhao, Sheng Zheng
{"title":"Spherical seepage model of Bingham fluid in rough and low-permeability porous media","authors":"Shanshan Yang, Ke Zhao, Sheng Zheng","doi":"10.1088/1873-7005/ad0dab","DOIUrl":null,"url":null,"abstract":"Based on the microstructure of porous media that exhibits statistical self-similarity fractal features, this paper investigates the radial flow characteristics of non-Newtonian fluids within rough porous media. The analytical equation of permeability and starting pressure gradient of Bingham fluid in low permeability rough porous media are established. It is found that the relative roughness is inversely proportional to the permeability and proportional to the starting pressure gradient. In addition, it is also found that the permeability of low permeability porous media decreases spherically with the increase of radial distance and curvature fractal dimension, and increases with the increase of pore area fractal dimension and porosity. Furthermore, the staring pressure gradient is directly proportional to the radial distance, yield stress and curvature fractal dimension. By comparing the model in this paper with the existing experimental data, the correctness and rationality of the spherical seepage fractal model are effectively verified.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ad0dab","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the microstructure of porous media that exhibits statistical self-similarity fractal features, this paper investigates the radial flow characteristics of non-Newtonian fluids within rough porous media. The analytical equation of permeability and starting pressure gradient of Bingham fluid in low permeability rough porous media are established. It is found that the relative roughness is inversely proportional to the permeability and proportional to the starting pressure gradient. In addition, it is also found that the permeability of low permeability porous media decreases spherically with the increase of radial distance and curvature fractal dimension, and increases with the increase of pore area fractal dimension and porosity. Furthermore, the staring pressure gradient is directly proportional to the radial distance, yield stress and curvature fractal dimension. By comparing the model in this paper with the existing experimental data, the correctness and rationality of the spherical seepage fractal model are effectively verified.
粗糙低渗透多孔介质中宾汉流体的球形渗流模型
基于多孔介质的微观结构呈现统计自相似分形特征,本文研究了非牛顿流体在粗糙多孔介质中的径向流动特性。建立了低渗透率粗糙多孔介质中宾汉流体渗透率和起始压力梯度的解析方程。研究发现,相对粗糙度与渗透率成反比,与起始压力梯度成正比。此外,还发现低渗透率多孔介质的渗透率随径向距离和曲率分形维数的增加而球形减小,随孔隙面积分形维数和孔隙度的增加而增大。此外,凝滞压力梯度与径向距离、屈服应力和曲率分形维数成正比。通过本文模型与现有实验数据的对比,有效验证了球形渗流分形模型的正确性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信