Jing Zhang, Guodong Cao, Wei Wang, Han Qiao, Yi Chen, Xiaoxiao Wang, Fuyue Wang, Wenlan Liu, Zongwei Cai
{"title":"Stable isotope-assisted mass spectrometry reveals in vivo distribution, metabolism, and excretion of tire rubber-derived 6PPD-quinone in mice","authors":"Jing Zhang, Guodong Cao, Wei Wang, Han Qiao, Yi Chen, Xiaoxiao Wang, Fuyue Wang, Wenlan Liu, Zongwei Cai","doi":"10.1016/j.scitotenv.2023.169291","DOIUrl":null,"url":null,"abstract":"<p>6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conducted a stable isotope-assisted high-resolution mass spectrometry (HRMS) assay to unveil the distribution, metabolism, excretion, and toxicokinetic properties of this contaminant in mice model. Mice were fed with a single dose deuterated 6PPD-Q-<em>d</em><sub><em>5</em></sub> at human-relevant exposure levels. Results indicated that 6PPD-Q was quickly assimilated and distributed into bloodstream and main organs of mice, with the concentrations reaching peaks under 1 h following administration. Notably, 6PPD-Q was primary distributed in the adipose tissue, marked by a significant C<sub>max</sub> (<em>p</em> < 0.05), followed by the kidney, lung, testis, liver, spleen, heart, and muscle. In addition, our measurement demonstrated that 6PPD-Q can penetrate the blood-brain barrier of mice within 0.5 h after exposure. The half-lives (t<sub>1/2</sub>) of 6PPD-Q in serum, lung, kidney, and spleen of mice were measured at 12.7 ± 0.3 h, 20.7 ± 1.4 h, 21.6 ± 5.3 h, and 20.6 ± 2.8 h, respectively. Using HRMS combined with isotope tracing techniques, two novel hydroxylated metabolites of 6PPD-Q in the mice liver were identified for the first time, which provides new insights into its rapid elimination in-vivo. Meanwhile, fecal excretion was identified as the main excretory pathway for 6PPD-Q and its hydroxylated metabolites. Collectively, our findings extend the current knowledge on the biological fate and exposure status of 6PPD-Q in mice model, which has the potential to be extrapolated to humans.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"5 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.169291","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conducted a stable isotope-assisted high-resolution mass spectrometry (HRMS) assay to unveil the distribution, metabolism, excretion, and toxicokinetic properties of this contaminant in mice model. Mice were fed with a single dose deuterated 6PPD-Q-d5 at human-relevant exposure levels. Results indicated that 6PPD-Q was quickly assimilated and distributed into bloodstream and main organs of mice, with the concentrations reaching peaks under 1 h following administration. Notably, 6PPD-Q was primary distributed in the adipose tissue, marked by a significant Cmax (p < 0.05), followed by the kidney, lung, testis, liver, spleen, heart, and muscle. In addition, our measurement demonstrated that 6PPD-Q can penetrate the blood-brain barrier of mice within 0.5 h after exposure. The half-lives (t1/2) of 6PPD-Q in serum, lung, kidney, and spleen of mice were measured at 12.7 ± 0.3 h, 20.7 ± 1.4 h, 21.6 ± 5.3 h, and 20.6 ± 2.8 h, respectively. Using HRMS combined with isotope tracing techniques, two novel hydroxylated metabolites of 6PPD-Q in the mice liver were identified for the first time, which provides new insights into its rapid elimination in-vivo. Meanwhile, fecal excretion was identified as the main excretory pathway for 6PPD-Q and its hydroxylated metabolites. Collectively, our findings extend the current knowledge on the biological fate and exposure status of 6PPD-Q in mice model, which has the potential to be extrapolated to humans.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.