{"title":"Structured model selection via ℓ1−ℓ2 optimization","authors":"Xiaofan Lu, Linan Zhang, Hongjin He","doi":"10.1088/1361-6420/ad0fad","DOIUrl":null,"url":null,"abstract":"Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex <inline-formula>\n<tex-math><?CDATA $\\ell_1-\\ell_2$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ipad0fadieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sparse optimization solved by the alternating direction method of multipliers. We show that if the set of candidate functions forms a structured random sampling matrix of a bounded orthogonal system, the recovery is stable and the error is bounded. The learning approach is validated on synthetic data generated by the viscous Burgers’ equation and two reaction–diffusion equations. The computational results demonstrate the theoretical guarantees of success and the efficiency with respect to the number of candidate functions.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"24 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad0fad","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Automated model selection is an important application in science and engineering. In this work, we develop a learning approach for identifying structured dynamical systems from undersampled and noisy spatiotemporal data. The learning is performed by a sparse least-squares fitting over a large set of candidate functions via a nonconvex ℓ1−ℓ2 sparse optimization solved by the alternating direction method of multipliers. We show that if the set of candidate functions forms a structured random sampling matrix of a bounded orthogonal system, the recovery is stable and the error is bounded. The learning approach is validated on synthetic data generated by the viscous Burgers’ equation and two reaction–diffusion equations. The computational results demonstrate the theoretical guarantees of success and the efficiency with respect to the number of candidate functions.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.