Estimating the pressure force around swimming plankton using micro particle image velocimetry

IF 1.3 4区 工程技术 Q3 MECHANICS
Fahrettin Gökhan Ergin, Erkan Günaydınoğlu, Dilek Funda Kurtuluş, Navish Wadhwa
{"title":"Estimating the pressure force around swimming plankton using micro particle image velocimetry","authors":"Fahrettin Gökhan Ergin, Erkan Günaydınoğlu, Dilek Funda Kurtuluş, Navish Wadhwa","doi":"10.1088/1873-7005/ad0ffb","DOIUrl":null,"url":null,"abstract":"Obtaining pressure force for freely swimming microorganisms is a challenging yet important problem. Here, we report the swimming kinematics and dynamics of the zooplankton <italic toggle=\"yes\">Acartia tonsa</italic> nauplius investigated using Micro Particle Image Velocimetry (<italic toggle=\"yes\">µ</italic>PIV). Using rigid object tracking, we obtain sub-pixel accurate localization of freely swimming <italic toggle=\"yes\">A. tonsa</italic>, revealing its highly periodic locomotion. We exploit this periodicity to obtain phase-locked averaged kinematics for position, speed, and acceleration. The swimming speed profile of <italic toggle=\"yes\">A. tonsa</italic> has a distinct double peak, due to its two power strokes. Next, we investigate the flow field around swimming <italic toggle=\"yes\">A. tonsa</italic> using <italic toggle=\"yes\">µ</italic>PIV. We dynamically mask <italic toggle=\"yes\">A. tonsa</italic> in <italic toggle=\"yes\">µ</italic>PIV images using an object-fixed coordinate transformation, leveraging the sub-pixel accurate localization. Our analysis shows of a pair of attached vortices during the two power strokes, which are pushed away during the recovery stroke. Finally, using a semi-implicit pressure velocity algorithm, we calculate the pressure force from the time-dependent flow fields. These calculations indicate a low-pressure region ahead of the <italic toggle=\"yes\">A. tonsa</italic> during the peak of the power strokes. The vertical pressure force correlates well with the vertical swimming speed.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"145 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ad0ffb","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining pressure force for freely swimming microorganisms is a challenging yet important problem. Here, we report the swimming kinematics and dynamics of the zooplankton Acartia tonsa nauplius investigated using Micro Particle Image Velocimetry (µPIV). Using rigid object tracking, we obtain sub-pixel accurate localization of freely swimming A. tonsa, revealing its highly periodic locomotion. We exploit this periodicity to obtain phase-locked averaged kinematics for position, speed, and acceleration. The swimming speed profile of A. tonsa has a distinct double peak, due to its two power strokes. Next, we investigate the flow field around swimming A. tonsa using µPIV. We dynamically mask A. tonsa in µPIV images using an object-fixed coordinate transformation, leveraging the sub-pixel accurate localization. Our analysis shows of a pair of attached vortices during the two power strokes, which are pushed away during the recovery stroke. Finally, using a semi-implicit pressure velocity algorithm, we calculate the pressure force from the time-dependent flow fields. These calculations indicate a low-pressure region ahead of the A. tonsa during the peak of the power strokes. The vertical pressure force correlates well with the vertical swimming speed.
利用微颗粒图像测速仪估算游动浮游生物周围的压力力
获取自由游动微生物的压力力是一个具有挑战性的重要问题。在这里,我们利用微粒子图像测速仪(μPIV)研究了浮游动物扁形虫(Acartia tonsa nauplius)的游泳运动学和动力学。通过刚性物体跟踪,我们获得了自由游动的扁囊藻亚像素精确定位,揭示了其高度周期性的运动。我们利用这种周期性获得了位置、速度和加速度的锁相平均运动学数据。吨蛙的游泳速度曲线有一个明显的双峰,这是因为它有两个动力冲程。接下来,我们利用 µPIV 研究了扁形金枪鱼游动时周围的流场。我们利用亚像素精确定位技术,通过对象固定坐标变换对 µPIV 图像中的扁嘴蝠进行动态屏蔽。我们的分析表明,在两次动力划水过程中,有一对附着的涡流,在恢复划水过程中,这对涡流被推开。最后,我们使用半隐式压力速度算法,从随时间变化的流场中计算出压力力。这些计算表明,在动力冲程的峰值期间,扁桃体前方有一个低压区域。垂直压力与垂直游泳速度密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluid Dynamics Research
Fluid Dynamics Research 物理-力学
CiteScore
2.90
自引率
6.70%
发文量
37
审稿时长
5 months
期刊介绍: Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信