{"title":"Using spatial ordinal patterns for non-parametric testing of spatial dependence","authors":"Christian H. Weiß , Hee-Young Kim","doi":"10.1016/j.spasta.2023.100800","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze data occurring in a regular two-dimensional grid for spatial dependence based on spatial ordinal patterns (SOPs). After having derived the asymptotic distribution of the SOP frequencies under the null hypothesis of spatial independence, we use the concept of the type of SOPs to define the statistics to test for spatial dependence. The proposed tests are not only implemented for real-valued random variables, but a solution for discrete-valued spatial processes in the plane is provided as well. The performances of the spatial-dependence tests are comprehensively analyzed by simulations, considering various data-generating processes. The results show that SOP-based dependence tests have good size properties and constitute an important and valuable complement to the spatial autocorrelation function. To be more specific, SOP-based tests can detect spatial dependence in non-linear processes, and they are robust with respect to outliers and zero inflation. To illustrate their application in practice, two real-world data examples from agricultural sciences are analyzed.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675323000751/pdfft?md5=509649b2dd645d53b18a5ac022b834c3&pid=1-s2.0-S2211675323000751-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000751","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We analyze data occurring in a regular two-dimensional grid for spatial dependence based on spatial ordinal patterns (SOPs). After having derived the asymptotic distribution of the SOP frequencies under the null hypothesis of spatial independence, we use the concept of the type of SOPs to define the statistics to test for spatial dependence. The proposed tests are not only implemented for real-valued random variables, but a solution for discrete-valued spatial processes in the plane is provided as well. The performances of the spatial-dependence tests are comprehensively analyzed by simulations, considering various data-generating processes. The results show that SOP-based dependence tests have good size properties and constitute an important and valuable complement to the spatial autocorrelation function. To be more specific, SOP-based tests can detect spatial dependence in non-linear processes, and they are robust with respect to outliers and zero inflation. To illustrate their application in practice, two real-world data examples from agricultural sciences are analyzed.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.