Genetic and Functional Characterization of a Salicylate 1-monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Igor Ivanovski, Gerben J. Zylstra
{"title":"Genetic and Functional Characterization of a Salicylate 1-monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13","authors":"Igor Ivanovski, Gerben J. Zylstra","doi":"10.1007/s12275-023-00093-x","DOIUrl":null,"url":null,"abstract":"<p><i>Pseudomonas stutzeri</i> strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (<i>salA</i>) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied <i>Pseudomonas putida</i> KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the <i>salA</i> gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned <i>salA</i> gene restored growth on salicylate. Transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the <i>salA</i> gene in <i>E. coli</i> BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned <i>salA</i> gene under control of the <i>lac</i> promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00093-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.

Abstract Image

水杨酸 1-单加氧酶的遗传和功能特性鉴定--该酶位于假单胞菌 AJR13 的整合和共轭元件 (ICE) 上
分离出了能在相关联苯(BPH)和二苯基甲烷(DPM)上生长的 stutzeri 假单胞菌菌株 AJR13。联苯(BPH)和二苯基甲烷(DPM)降解途径基因存在于染色体的整合和共轭元件(ICE)上。对 AJR13 基因组序列的研究发现,尽管 AJR13 不在水杨酸盐上生长,但其编码的水杨酸盐 1-单加氧酶(salA)基因与 ICE 有关。将 ICE 移植到经过充分研究的假单胞菌 KT2440 上,得到了能在水杨酸盐上生长的 KT2440 菌株。对 KT2440 中 ICE 上的 salA 基因进行基因敲除诱变,可消除其在水杨酸盐上生长的能力。用克隆的 salA 基因对敲除基因进行补码,可恢复在水杨酸盐上的生长。将克隆的 salA 基因在 lac 启动子的控制下转移到 KT2440 中,可使菌株在水杨酸盐上生长。在大肠杆菌 BL21 DE3 中异源表达 salA 基因,可从水杨酸中产生儿茶酚,这证实它确实是一种水杨酸 1-单加氧酶。有趣的是,将克隆的 salA 基因在 lac 启动子的控制下转入 AJR13 后,菌株现在可以在水杨酸盐上生长,这表明下游儿茶酚途径的基因表达是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信