Energy efficient enhanced all pass transformation fostered variable digital filter design based on approximate adder and approximate multiplier for eradicating sensor nodes noise
IF 1.2 4区 工程技术Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
M. Ramkumar Raja, R. Naveen, C. Anand Deva Durai, Mohammed Usman, Neeraj Kumar Shukla, Mohammed Abdul Muqeet
{"title":"Energy efficient enhanced all pass transformation fostered variable digital filter design based on approximate adder and approximate multiplier for eradicating sensor nodes noise","authors":"M. Ramkumar Raja, R. Naveen, C. Anand Deva Durai, Mohammed Usman, Neeraj Kumar Shukla, Mohammed Abdul Muqeet","doi":"10.1007/s10470-023-02201-8","DOIUrl":null,"url":null,"abstract":"<div><p>Variable digital filter (VDF) plays a significant role in communication and signal processing field. Any prototype filter's preferred frequency response is attained by creating All Pass Transformation (APT) based filter to maintain complete control over the cut-off frequency. However, the speed, power, and area usage of the digital filter are constrained by its performance. Therefore, in this manuscript, All Pass Transformation based Variable digital filters (APT-VDF) using Error Reduced Carry Prediction Approximate Adder (ERCPAA) andSandpiper Optimization fostered Approximate Multiplier (SO-AM) is proposed. The proposed APT-VDF-ERCPAA-SOAM filter design is utilized for enhancing the filter efficiency by reducing noise in the sensor nodes. The proposed ERCPAA design is incorporated with carry prediction and constant truncation for diminishing the path delay and area utilization. Moreover, the proposed SO-AM is used for minimizing the design complexity and power utilization. The simulation of the proposed method is activated in Verilog and the design is synthesized in FPGA uses Xilinx ISE 14.5. The proposed APT-VDF- ERCPAA- SO-AM filter design has attained 35.6%, 21.75%, 28.69% lower power and 46.58%, 12.3%, 38.07% lower delay than the existing approaches, like Very Large-Scale Integration design of All Pass Transformation based Variable digital filters uses a new variable block sized ternary adder (VBSTA) and ternary multiplier (APTVDF-VBSTA-TM), Finite Impulse Response (FIR) adaptive filter design by hybridizing canonical signed digit (CSD) and approximate booth recode (ABR) algorithm in DA architecture (FIR- CSDABR-DA) and digital FIR filter design using Carry Save Adder (CSA) and Structured Tree Multiplier (FIR-CSA-STM) respectively.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"118 3","pages":"399 - 413"},"PeriodicalIF":1.2000,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02201-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Variable digital filter (VDF) plays a significant role in communication and signal processing field. Any prototype filter's preferred frequency response is attained by creating All Pass Transformation (APT) based filter to maintain complete control over the cut-off frequency. However, the speed, power, and area usage of the digital filter are constrained by its performance. Therefore, in this manuscript, All Pass Transformation based Variable digital filters (APT-VDF) using Error Reduced Carry Prediction Approximate Adder (ERCPAA) andSandpiper Optimization fostered Approximate Multiplier (SO-AM) is proposed. The proposed APT-VDF-ERCPAA-SOAM filter design is utilized for enhancing the filter efficiency by reducing noise in the sensor nodes. The proposed ERCPAA design is incorporated with carry prediction and constant truncation for diminishing the path delay and area utilization. Moreover, the proposed SO-AM is used for minimizing the design complexity and power utilization. The simulation of the proposed method is activated in Verilog and the design is synthesized in FPGA uses Xilinx ISE 14.5. The proposed APT-VDF- ERCPAA- SO-AM filter design has attained 35.6%, 21.75%, 28.69% lower power and 46.58%, 12.3%, 38.07% lower delay than the existing approaches, like Very Large-Scale Integration design of All Pass Transformation based Variable digital filters uses a new variable block sized ternary adder (VBSTA) and ternary multiplier (APTVDF-VBSTA-TM), Finite Impulse Response (FIR) adaptive filter design by hybridizing canonical signed digit (CSD) and approximate booth recode (ABR) algorithm in DA architecture (FIR- CSDABR-DA) and digital FIR filter design using Carry Save Adder (CSA) and Structured Tree Multiplier (FIR-CSA-STM) respectively.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.