Ying Xue , Kai Wang , Yunli Jiang , Yanmiao Dai , Xiaoyu Liu , Bing Pei , Hui Li , Hongwei Xu , Guodong Zhao
{"title":"An ultrasensitive and multiplexed miRNA one-step real time RT-qPCR detection system and its application in esophageal cancer serum","authors":"Ying Xue , Kai Wang , Yunli Jiang , Yanmiao Dai , Xiaoyu Liu , Bing Pei , Hui Li , Hongwei Xu , Guodong Zhao","doi":"10.1016/j.bios.2023.115927","DOIUrl":null,"url":null,"abstract":"<div><p><span>MicroRNAs<span> (miRNAs) are increasingly recognized as promising biomarkers for early disease diagnosis and prognosis. Therefore, the need for rapid, robust methods for multiplex miRNA detection in biological research and clinical diagnosis is crucial. This study introduces a novel multiplex miRNA detection method, SMOS-qPCR (Sensitive and Multiplexed One-Step RT-qPCR). The method integrates multiplexed reverse transcription and TaqMan-based qPCR into a single tube, employing a one-step operation on a real-time PCR system. We investigated the effect of 3′ end phosphorylation of the Linker, Linker concentration and probe concentration on the SMOS-qPCR, resulted in a wide linear range from 1 fM to 0.1 zM (R</span></span><sup>2</sup> ≥ 0.99 for each miRNA), surpassing the capabilities of stem-loop RT-qPCR and SYBR Green One-step RT-qPCR. The method showed excellent performance in distinguishing mature miRNA from miRNA precursor, and successfully detected four miRNAs in a single tube without cross-interference. Its high specificity enables precise differentiation of less than 1% nonspecific signal. Finally, we demonstrated the effectiveness of the SMOS-qPCR system in detecting circulating miRNAs in serum samples, distinguishing between esophageal cancers and health individuals with high AUC values (>0.940). In conclusion, the proposed SMOS-qPCR system offers a straightforward and promising approach for miRNA profiling in future clinical applications.</p></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"247 ","pages":"Article 115927"},"PeriodicalIF":10.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566323008692","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are increasingly recognized as promising biomarkers for early disease diagnosis and prognosis. Therefore, the need for rapid, robust methods for multiplex miRNA detection in biological research and clinical diagnosis is crucial. This study introduces a novel multiplex miRNA detection method, SMOS-qPCR (Sensitive and Multiplexed One-Step RT-qPCR). The method integrates multiplexed reverse transcription and TaqMan-based qPCR into a single tube, employing a one-step operation on a real-time PCR system. We investigated the effect of 3′ end phosphorylation of the Linker, Linker concentration and probe concentration on the SMOS-qPCR, resulted in a wide linear range from 1 fM to 0.1 zM (R2 ≥ 0.99 for each miRNA), surpassing the capabilities of stem-loop RT-qPCR and SYBR Green One-step RT-qPCR. The method showed excellent performance in distinguishing mature miRNA from miRNA precursor, and successfully detected four miRNAs in a single tube without cross-interference. Its high specificity enables precise differentiation of less than 1% nonspecific signal. Finally, we demonstrated the effectiveness of the SMOS-qPCR system in detecting circulating miRNAs in serum samples, distinguishing between esophageal cancers and health individuals with high AUC values (>0.940). In conclusion, the proposed SMOS-qPCR system offers a straightforward and promising approach for miRNA profiling in future clinical applications.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.