{"title":"Multi-objective cooperation optimization research on dynamic response and energy loss of high-speed solenoid valve for diesel engine injector","authors":"Zhiqing Yu, Jianhui Zhao, Rongqiang Wei","doi":"10.3233/jae-230099","DOIUrl":null,"url":null,"abstract":"The dynamic response and operational reliability of high-speed solenoid valve (HSV) for diesel engine injector are the main indicators to measure their performance. At high-frequency, the eddy current energy and Joule energy generated by the HSV will be converted into heat, which has a significantimpact on the service life of HSV. The optimization of HSV involves the interaction between energy loss and the dynamic response of HSV. To optimize the HSV dynamic response time considering energy loss, the HSV work process simulation model was established in this paper, and the model was verified based on armature lift experimental data. Without changing the structural parameters of the HSV, the four parameters of electroconductibility, spring stiffness, damping coefficient, and coil resistance were selected as the key parameters affecting the dynamic response and energy loss. The response surface models (RSMs) of opening response time, closing response time, eddy current energy and Joule energy of the HSV were constructed by using the smoothing spline-analysis of variance method. The multi-objective cooperation optimization of HSV under the interaction of dynamic response characteristics and energy loss was completed by using non-dominated sorting genetic algorithms. After optimization, the opening and closing response times of HSV were reduced by 15.1% and 16.6% respectively, while the eddy current energy and Joule energy were reduced by 5.2% and 48.4% respectively. In this paper, the dynamic response and energy loss were jointly optimized. The presented results provide theory instruction for multi-objective cooperative optimization of HSV.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"179 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230099","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic response and operational reliability of high-speed solenoid valve (HSV) for diesel engine injector are the main indicators to measure their performance. At high-frequency, the eddy current energy and Joule energy generated by the HSV will be converted into heat, which has a significantimpact on the service life of HSV. The optimization of HSV involves the interaction between energy loss and the dynamic response of HSV. To optimize the HSV dynamic response time considering energy loss, the HSV work process simulation model was established in this paper, and the model was verified based on armature lift experimental data. Without changing the structural parameters of the HSV, the four parameters of electroconductibility, spring stiffness, damping coefficient, and coil resistance were selected as the key parameters affecting the dynamic response and energy loss. The response surface models (RSMs) of opening response time, closing response time, eddy current energy and Joule energy of the HSV were constructed by using the smoothing spline-analysis of variance method. The multi-objective cooperation optimization of HSV under the interaction of dynamic response characteristics and energy loss was completed by using non-dominated sorting genetic algorithms. After optimization, the opening and closing response times of HSV were reduced by 15.1% and 16.6% respectively, while the eddy current energy and Joule energy were reduced by 5.2% and 48.4% respectively. In this paper, the dynamic response and energy loss were jointly optimized. The presented results provide theory instruction for multi-objective cooperative optimization of HSV.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.