Shanyi Jiang, Xinliang Pang, Yunfen Chang, Jie Cui, Yubing Han
{"title":"Analysis on the low-frequency electromagnetic pulse coupling to horizontal electrically short lines","authors":"Shanyi Jiang, Xinliang Pang, Yunfen Chang, Jie Cui, Yubing Han","doi":"10.3233/jae-230010","DOIUrl":null,"url":null,"abstract":"<h4><span>Abstract</span></h4><p>In this study, we investigated the coupling features of the nuclear electromagnetic pulse (NEMP) on overhead cables in the middle-and-far regions, different from the transmission line model commonly used for field-line coupling in high-frequency cases, using a simpler lumped approximation to solve the electrically small size model in low-frequency cases. To verify its effectiveness, a simulation model with the same conditions was set up using the software of Computer Simulation Technology (CST), and cable coupling experiments were performed in a laboratory environment using a bounded-wave electromagnetic pulse simulator. The calculated results of the lumped approximation circuit were compared with the CST simulation and measured results, and the agreement was good. The results also shows that the load exhibits a differential response in the case of the low impedance and it is consistent with the excitation signal in the case of the high impedance. Finally, some more experiments were constructed to analyzed the effect of different cable parameters on the cable load response through experiments, and the experimental results are also in general agreement with the theoretical analysis, in which the induced signal of the low-impedance load is mainly determined by the magnetic field in the direction normal to the cable and the ground loop and the induced signal of the high-impedance load is mainly determined by the electric field in the direction of the height of the cable erection. </p>","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"240 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigated the coupling features of the nuclear electromagnetic pulse (NEMP) on overhead cables in the middle-and-far regions, different from the transmission line model commonly used for field-line coupling in high-frequency cases, using a simpler lumped approximation to solve the electrically small size model in low-frequency cases. To verify its effectiveness, a simulation model with the same conditions was set up using the software of Computer Simulation Technology (CST), and cable coupling experiments were performed in a laboratory environment using a bounded-wave electromagnetic pulse simulator. The calculated results of the lumped approximation circuit were compared with the CST simulation and measured results, and the agreement was good. The results also shows that the load exhibits a differential response in the case of the low impedance and it is consistent with the excitation signal in the case of the high impedance. Finally, some more experiments were constructed to analyzed the effect of different cable parameters on the cable load response through experiments, and the experimental results are also in general agreement with the theoretical analysis, in which the induced signal of the low-impedance load is mainly determined by the magnetic field in the direction normal to the cable and the ground loop and the induced signal of the high-impedance load is mainly determined by the electric field in the direction of the height of the cable erection.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.