The application of artificial intelligence and machine learning in the design process for electromagnetic devices

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
David A. Lowther
{"title":"The application of artificial intelligence and machine learning in the design process for electromagnetic devices","authors":"David A. Lowther","doi":"10.3233/jae-230104","DOIUrl":null,"url":null,"abstract":"Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230104","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.
人工智能和机器学习在电磁设备设计过程中的应用
与许多其他设备一样,电磁设备的设计也是一个反问题。问题在于,输入的性能和一些约束条件已经提供,但设计问题的解决方案却不是唯一的。此外,按照惯例,在设计流程的开始阶段,需要快速生成有关潜在解决方案的信息,以便设计人员在进行详细的性能分析之前做出有效决策,但从简单的分析工具中获得的信息量有限。机器学习可以在设计流程的早期阶段增加可用信息量,从而提供帮助。这并不是一个新概念,事实上,几十年来人们一直在考虑这个问题,但始终受到可用计算能力的限制。机器学习领域的最新进展可能会使设计过程的 "尺寸确定 "阶段更加有效,从而降低最终设计的生成成本。本文的目的是回顾将人工智能应用于电磁设备设计和分析的一些工作,并通过考虑机器学习在传统设计中使用的几种工具中的一些实例,讨论过去三十年来所考虑的可能情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信