{"title":"The application of artificial intelligence and machine learning in the design process for electromagnetic devices","authors":"David A. Lowther","doi":"10.3233/jae-230104","DOIUrl":null,"url":null,"abstract":"Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230104","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Designing an electromagnetic device, as with many other devices, is an inverse problem. The issue is that the performance and some constraints on the inputs are provided but the solution to the design problem is non-unique. Additionally, conventionally, at the start of the design process, the information on potential solutions needs to be generated quickly so that a designer can make effective decisions before moving on to detailed performance analysis, but the amount of information that can be obtained from simple analysis tools is limited. Machine learning may be able to assist by increasing the amount of information available at the early stages of the design process. This is not a new concept, in fact it has been considered for several decades but has always been limited by the computational power available. Recent advances in machine learning might allow for the creation of a more effective “sizing” stage of the design process, thus reducing the cost of generating a final design. The goal of this paper is to review some of the work in applying artificial intelligence to the design and analysis of electromagnetic devices and to discuss what might be possible by considering some examples of the use of machine learning in several tools used in conventional design, which have been considered over the past three decades.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.