Nathan Cook, Kailash Cook, Kaitlyn J Harris, Al Songcuan, Adam K Smith
{"title":"Lessons learned implementing mineral accretion and coral gardening at Agincourt Reef, Great Barrier Reef","authors":"Nathan Cook, Kailash Cook, Kaitlyn J Harris, Al Songcuan, Adam K Smith","doi":"10.1111/emr.12585","DOIUrl":null,"url":null,"abstract":"The health and diversity of coral reefs are critically important to the stability and value of the marine tourism industry. Declines in coral reef health through climate change impacts and cyclones, and associated media coverage, have impacted tourism visitation. In January 2018, a major change in Australian Government policy included a Reef Restoration and Adaptation Program to investigate the best science and technology options for helping the Great Barrier Reef recover and adapt to the changing environment. We report on a trial of two intervention methods, mineral accretion and coral gardening, to improve hard coral recovery at a popular site on the Great Barrier Reef. We installed six artificial reef substrates onto which an equal number of coral fragments of seven species were transplanted over the course of two years. During this time, three of the six treatments were connected to a low-voltage power source to encourage mineral accretion and enhance coral growth. Electrolysis resulted in substantial mineral accretion on the steel substrate, however, the technology had no positive effect on the survival or growth of transplanted coral colonies. After 13 months, a second round of transplanted coral fragments was undertaken, and the electrolysis was discontinued. Over a four-year period, mean live coral cover increased significantly in both treatment locations, from 1.7% and 0% to 80.8% and 75.8%, respectively. Control locations increased insignificantly from a mean of 5% to 14.2%. The mineral accretion technology proved technically challenging and did not support the growth or health of transplanted corals, providing no evidence to support the use of mineral accretion technology for this purpose. The technology may, however, have applications in the creation of new, solid substrates and for initial rubble stabilisation efforts. These results demonstrate the effective use of artificial substrates in conjunction with coral gardening techniques for the recovery of hard coral at degraded tourism sites.","PeriodicalId":54325,"journal":{"name":"Ecological Management & Restoration","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Management & Restoration","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/emr.12585","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The health and diversity of coral reefs are critically important to the stability and value of the marine tourism industry. Declines in coral reef health through climate change impacts and cyclones, and associated media coverage, have impacted tourism visitation. In January 2018, a major change in Australian Government policy included a Reef Restoration and Adaptation Program to investigate the best science and technology options for helping the Great Barrier Reef recover and adapt to the changing environment. We report on a trial of two intervention methods, mineral accretion and coral gardening, to improve hard coral recovery at a popular site on the Great Barrier Reef. We installed six artificial reef substrates onto which an equal number of coral fragments of seven species were transplanted over the course of two years. During this time, three of the six treatments were connected to a low-voltage power source to encourage mineral accretion and enhance coral growth. Electrolysis resulted in substantial mineral accretion on the steel substrate, however, the technology had no positive effect on the survival or growth of transplanted coral colonies. After 13 months, a second round of transplanted coral fragments was undertaken, and the electrolysis was discontinued. Over a four-year period, mean live coral cover increased significantly in both treatment locations, from 1.7% and 0% to 80.8% and 75.8%, respectively. Control locations increased insignificantly from a mean of 5% to 14.2%. The mineral accretion technology proved technically challenging and did not support the growth or health of transplanted corals, providing no evidence to support the use of mineral accretion technology for this purpose. The technology may, however, have applications in the creation of new, solid substrates and for initial rubble stabilisation efforts. These results demonstrate the effective use of artificial substrates in conjunction with coral gardening techniques for the recovery of hard coral at degraded tourism sites.
期刊介绍:
Ecological Management & Restoration is a peer-reviewed journal with the dual aims of (i) reporting the latest science to assist ecologically appropriate management and restoration actions and (ii) providing a forum for reporting on these actions. Guided by an editorial board made up of researchers and practitioners, EMR seeks features, topical opinion pieces, research reports, short notes and project summaries applicable to Australasian ecosystems to encourage more regionally-appropriate management. Where relevant, contributions should draw on international science and practice and highlight any relevance to the global challenge of integrating biodiversity conservation in a rapidly changing world.
Topic areas:
Improved management and restoration of plant communities, fauna and habitat; coastal, marine and riparian zones; restoration ethics and philosophy; planning; monitoring and assessment; policy and legislation; landscape pattern and design; integrated ecosystems management; socio-economic issues and solutions; techniques and methodology; threatened species; genetic issues; indigenous land management; weeds and feral animal control; landscape arts and aesthetics; education and communication; community involvement.