Hongru Gao, Xiaofei Liao, Zhiyuan Shao, Kexin Li, Jiajie Chen, Hai Jin
{"title":"A survey on dynamic graph processing on GPUs: concepts, terminologies and systems","authors":"Hongru Gao, Xiaofei Liao, Zhiyuan Shao, Kexin Li, Jiajie Chen, Hai Jin","doi":"10.1007/s11704-023-2656-1","DOIUrl":null,"url":null,"abstract":"<p>Graphs that are used to model real-world entities with vertices and relationships among entities with edges, have proven to be a powerful tool for describing real-world problems in applications. In most real-world scenarios, entities and their relationships are subject to constant changes. Graphs that record such changes are called dynamic graphs. In recent years, the widespread application scenarios of dynamic graphs have stimulated extensive research on dynamic graph processing systems that continuously ingest graph updates and produce up-to-date graph analytics results. As the scale of dynamic graphs becomes larger, higher performance requirements are demanded to dynamic graph processing systems. With the massive parallel processing power and high memory bandwidth, GPUs become mainstream vehicles to accelerate dynamic graph processing tasks. GPU-based dynamic graph processing systems mainly address two challenges: maintaining the graph data when updates occur (i.e., graph updating) and producing analytics results in time (i.e., graph computing). In this paper, we survey GPU-based dynamic graph processing systems and review their methods on addressing both graph updating and graph computing. To comprehensively discuss existing dynamic graph processing systems on GPUs, we first introduce the terminologies of dynamic graph processing and then develop a taxonomy to describe the methods employed for graph updating and graph computing. In addition, we discuss the challenges and future research directions of dynamic graph processing on GPUs.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"2 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-2656-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Graphs that are used to model real-world entities with vertices and relationships among entities with edges, have proven to be a powerful tool for describing real-world problems in applications. In most real-world scenarios, entities and their relationships are subject to constant changes. Graphs that record such changes are called dynamic graphs. In recent years, the widespread application scenarios of dynamic graphs have stimulated extensive research on dynamic graph processing systems that continuously ingest graph updates and produce up-to-date graph analytics results. As the scale of dynamic graphs becomes larger, higher performance requirements are demanded to dynamic graph processing systems. With the massive parallel processing power and high memory bandwidth, GPUs become mainstream vehicles to accelerate dynamic graph processing tasks. GPU-based dynamic graph processing systems mainly address two challenges: maintaining the graph data when updates occur (i.e., graph updating) and producing analytics results in time (i.e., graph computing). In this paper, we survey GPU-based dynamic graph processing systems and review their methods on addressing both graph updating and graph computing. To comprehensively discuss existing dynamic graph processing systems on GPUs, we first introduce the terminologies of dynamic graph processing and then develop a taxonomy to describe the methods employed for graph updating and graph computing. In addition, we discuss the challenges and future research directions of dynamic graph processing on GPUs.
期刊介绍:
Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.