{"title":"Can a machine learn from behavioral biases? Evidence from stock return predictability of deep learning models","authors":"Suk-Joon Byun , Sangheum Cho , Da-Hea Kim","doi":"10.1016/j.jbef.2023.100881","DOIUrl":null,"url":null,"abstract":"<div><p>We examine how the return predictability of deep learning models varies with stocks’ vulnerability to investors’ behavioral biases. Using an extensive list of anomaly variables, we find that the long-short strategy of buying (shorting) stocks with high (low) deep learning signals generates greater returns for stocks more vulnerable to behavioral biases, i.e., small, young, unprofitable, volatile, non-dividend-paying, close-to-default, and lottery-like stocks. This performance of deep learning models for speculative stocks becomes pronounced when investor sentiment is high, and when new information is delivered through earnings announcements. Moreover, our nonlinear deep learning signals are negatively associated with analysts’ earnings forecast error especially for speculative stocks, implying that analysts’ forecasts are too low for speculative stocks with high deep learning signals. These results suggest that deep learning models with nonlinear structures are useful for capturing mispricing induced by behavioral biases.</p></div>","PeriodicalId":47026,"journal":{"name":"Journal of Behavioral and Experimental Finance","volume":"41 ","pages":"Article 100881"},"PeriodicalIF":4.3000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral and Experimental Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214635023000953","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
We examine how the return predictability of deep learning models varies with stocks’ vulnerability to investors’ behavioral biases. Using an extensive list of anomaly variables, we find that the long-short strategy of buying (shorting) stocks with high (low) deep learning signals generates greater returns for stocks more vulnerable to behavioral biases, i.e., small, young, unprofitable, volatile, non-dividend-paying, close-to-default, and lottery-like stocks. This performance of deep learning models for speculative stocks becomes pronounced when investor sentiment is high, and when new information is delivered through earnings announcements. Moreover, our nonlinear deep learning signals are negatively associated with analysts’ earnings forecast error especially for speculative stocks, implying that analysts’ forecasts are too low for speculative stocks with high deep learning signals. These results suggest that deep learning models with nonlinear structures are useful for capturing mispricing induced by behavioral biases.
期刊介绍:
Behavioral and Experimental Finance represent lenses and approaches through which we can view financial decision-making. The aim of the journal is to publish high quality research in all fields of finance, where such research is carried out with a behavioral perspective and / or is carried out via experimental methods. It is open to but not limited to papers which cover investigations of biases, the role of various neurological markers in financial decision making, national and organizational culture as it impacts financial decision making, sentiment and asset pricing, the design and implementation of experiments to investigate financial decision making and trading, methodological experiments, and natural experiments.
Journal of Behavioral and Experimental Finance welcomes full-length and short letter papers in the area of behavioral finance and experimental finance. The focus is on rapid dissemination of high-impact research in these areas.