Rheology of continental lithosphere and seismic anisotropy

IF 6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
{"title":"Rheology of continental lithosphere and seismic anisotropy","authors":"","doi":"10.1007/s11430-022-1171-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Rheology of rocks controls the deformation of the Earth at various space-time scales, which is crucial to understand the tectonic evolution of continental lithosphere. Researches of rock rheology are mainly conducted via high-pressure and high-temperature rheological experiments and multi-scale observations and measurements of naturally deformed rocks. At present, a large amount of data from such kinds of studies have been accumulated. This paper first provides an up-to-date comprehensive review of the rheological mechanisms, fabric types and seismic properties of the main rock-forming minerals at different depths of continental lithosphere, including olivine, orthopyroxene, clinopyroxene, amphibole, plagioclase, quartz and mica. Then, progress in high-pressure and high-temperature experiments and natural deformation observations is introduced, mainly regarding the rheological strength and behavior, seismic velocity and anisotropy of lithospheric mantle peridotite, eclogite, mafic granulite, amphibolite and felsic rocks. Finally, by taking the Tibetan Plateau as an example, the application of rock rheology for quantitative interpretation of seismic anisotropy data is discussed. The combination of mineral deformation fabrics and seismic anisotropy is expected to make an important breakthrough in understanding the rheological properties and structure of continental lithosphere.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"83 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-022-1171-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rheology of rocks controls the deformation of the Earth at various space-time scales, which is crucial to understand the tectonic evolution of continental lithosphere. Researches of rock rheology are mainly conducted via high-pressure and high-temperature rheological experiments and multi-scale observations and measurements of naturally deformed rocks. At present, a large amount of data from such kinds of studies have been accumulated. This paper first provides an up-to-date comprehensive review of the rheological mechanisms, fabric types and seismic properties of the main rock-forming minerals at different depths of continental lithosphere, including olivine, orthopyroxene, clinopyroxene, amphibole, plagioclase, quartz and mica. Then, progress in high-pressure and high-temperature experiments and natural deformation observations is introduced, mainly regarding the rheological strength and behavior, seismic velocity and anisotropy of lithospheric mantle peridotite, eclogite, mafic granulite, amphibolite and felsic rocks. Finally, by taking the Tibetan Plateau as an example, the application of rock rheology for quantitative interpretation of seismic anisotropy data is discussed. The combination of mineral deformation fabrics and seismic anisotropy is expected to make an important breakthrough in understanding the rheological properties and structure of continental lithosphere.

大陆岩石圈流变学和地震各向异性
摘要 岩石流变控制着地球在不同时空尺度上的变形,这对于理解大陆岩石圈的构造演化至关重要。岩石流变学研究主要通过高压和高温流变学实验以及对天然变形岩石的多尺度观测和测量来进行。目前,此类研究已积累了大量数据。本文首先对大陆岩石圈不同深度的主要成岩矿物(包括橄榄石、正长石、挛辉石、闪石、斜长石、石英和云母)的流变机制、构造类型和地震性质进行了最新的全面综述。然后,介绍了高压、高温实验和自然变形观测的进展,主要涉及岩石圈地幔橄榄岩、辉绿岩、黑云母花岗岩、闪长岩和长英岩的流变强度和行为、地震速度和各向异性。最后,以青藏高原为例,讨论了岩石流变学在地震各向异性数据定量解释中的应用。矿物变形织构与地震各向异性的结合有望在理解大陆岩石圈的流变特性和结构方面取得重要突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Earth Sciences
Science China Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
9.60
自引率
5.30%
发文量
135
审稿时长
3-8 weeks
期刊介绍: Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信