Decoupling photonic and thermal contributions for photoelectrochemical sensing of melatonin via graphene oxide nanoribbons

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Chia-Liang Sun , Hung-Yu Chen , Mrinal Poddar , Yu-Jen Lu
{"title":"Decoupling photonic and thermal contributions for photoelectrochemical sensing of melatonin via graphene oxide nanoribbons","authors":"Chia-Liang Sun ,&nbsp;Hung-Yu Chen ,&nbsp;Mrinal Poddar ,&nbsp;Yu-Jen Lu","doi":"10.1016/j.elecom.2023.107649","DOIUrl":null,"url":null,"abstract":"<div><p>This work elucidates the photoelectrochemical (PEC) sensing of melatonin employing graphene oxide nanoribbons (GONRs) synthesized through a microwave-assisted method. GONRs served as electrocatalysts for screen-printed carbon electrodes (SPCE) to facilitate melatonin detection. We incorporated both a light-emitting diode (LED) and a solar simulator as light sources for PEC evaluations. Cyclic voltammetry revealed that the faradaic currents corresponding to melatonin oxidation on GONRs-modified SPCE were amplified under both LED and simulated solar light irradiation. Notably, the GONR (150 W) registered the most pronounced enhancement in the photo-assisted faradaic current and the highest conversion efficiency. Employing the solar simulator, certain thermal factor ratios concerning conversion efficiencies surpassed 50.0% at light intensities of both 80 mW/cm<sup>2</sup> and 100 mW/cm<sup>2</sup>. Conversely, with the LED source, the thermal contribution remained below 15.0% of the total PEC faradaic current. We posit that obtaining conversion efficiencies devoid of thermal influences is pivotal for deepening our comprehension of PEC biosensing mechanisms.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248123002242/pdfft?md5=dcdc5f5ae2a30db38660310334931bf1&pid=1-s2.0-S1388248123002242-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248123002242","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This work elucidates the photoelectrochemical (PEC) sensing of melatonin employing graphene oxide nanoribbons (GONRs) synthesized through a microwave-assisted method. GONRs served as electrocatalysts for screen-printed carbon electrodes (SPCE) to facilitate melatonin detection. We incorporated both a light-emitting diode (LED) and a solar simulator as light sources for PEC evaluations. Cyclic voltammetry revealed that the faradaic currents corresponding to melatonin oxidation on GONRs-modified SPCE were amplified under both LED and simulated solar light irradiation. Notably, the GONR (150 W) registered the most pronounced enhancement in the photo-assisted faradaic current and the highest conversion efficiency. Employing the solar simulator, certain thermal factor ratios concerning conversion efficiencies surpassed 50.0% at light intensities of both 80 mW/cm2 and 100 mW/cm2. Conversely, with the LED source, the thermal contribution remained below 15.0% of the total PEC faradaic current. We posit that obtaining conversion efficiencies devoid of thermal influences is pivotal for deepening our comprehension of PEC biosensing mechanisms.

Abstract Image

Abstract Image

通过氧化石墨烯纳米带实现褪黑激素光电化学传感的光子和热贡献解耦
本研究阐明了利用微波辅助方法合成的氧化石墨烯纳米带(GONR)对褪黑素进行光电化学(PEC)传感的方法。GONRs 可作为丝网印刷碳电极 (SPCE) 的电催化剂,促进褪黑激素的检测。我们将发光二极管(LED)和太阳能模拟器作为光源用于 PEC 评估。循环伏安法显示,在发光二极管和模拟太阳光照射下,GONRs修饰的SPCE上与褪黑素氧化相对应的法拉第电流均被放大。值得注意的是,GONR(150 W)的光辅助法拉第电流增强最明显,转换效率最高。利用太阳能模拟器,在光照强度为 80 mW/cm2 和 100 mW/cm2 时,有关转换效率的某些热因子比率超过了 50.0%。相反,在使用 LED 光源时,热贡献仍低于 PEC 法拉第总电流的 15.0%。我们认为,获得不受热影响的转换效率对于加深我们对 PEC 生物传感机制的理解至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信