Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav
{"title":"Performance optimization of tri-gate junctionless FinFET using channel stack engineering for digital and analog/RF design","authors":"Devenderpal Singh, Shalini Chaudhary, Basudha Dewan, Menka Yadav","doi":"10.1088/1674-4926/44/11/114103","DOIUrl":null,"url":null,"abstract":"This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The <italic toggle=\"yes\">I</italic>−<italic toggle=\"yes\">V</italic> characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (<italic toggle=\"yes\">V</italic>\n<sub>t</sub>), drain current (<italic toggle=\"yes\">I</italic>\n<sub>ON</sub>), OFF current (<italic toggle=\"yes\">I</italic>\n<sub>OFF</sub>), and ON-OFF current ratio (<italic toggle=\"yes\">I</italic>\n<sub>ON</sub>/<italic toggle=\"yes\">I</italic>\n<sub>OFF</sub>) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (<italic toggle=\"yes\">g</italic>\n<sub>m</sub>), output transconductance (<italic toggle=\"yes\">g</italic>\n<sub>ds</sub>), gain (<italic toggle=\"yes\">g</italic>\n<sub>m</sub>/<italic toggle=\"yes\">g</italic>\n<sub>ds</sub>), transconductance generation factor (TGF), cut-off frequency (<italic toggle=\"yes\">f</italic>\n<sub>T</sub>), maximum oscillation frequency (<italic toggle=\"yes\">f</italic>\n<sub>max</sub>), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (<italic toggle=\"yes\">g</italic>\n<sub>m2</sub>, <italic toggle=\"yes\">g</italic>\n<sub>m3</sub>), voltage intercept points (VIP<sub>2</sub>, VIP<sub>3</sub>) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more <italic toggle=\"yes\">g</italic>\n<sub>m</sub> and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"59 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/44/11/114103","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript explores the behavior of a junctionless tri-gate FinFET at the nano-scale region using SiGe material for the channel. For the analysis, three different channel structures are used: (a) tri-layer stack channel (TLSC) (Si–SiGe–Si), (b) double layer stack channel (DLSC) (SiGe–Si), (c) single layer channel (SLC) (Si). The IV characteristics, subthreshold swing (SS), drain-induced barrier lowering (DIBL), threshold voltage (V t), drain current (I ON), OFF current (I OFF), and ON-OFF current ratio (I ON/I OFF) are observed for the structures at a 20 nm gate length. It is seen that TLSC provides 21.3% and 14.3% more ON current than DLSC and SLC, respectively. The paper also explores the analog and RF factors such as input transconductance (g m), output transconductance (g ds), gain (g m/g ds), transconductance generation factor (TGF), cut-off frequency (f T), maximum oscillation frequency (f max), gain frequency product (GFP) and linearity performance parameters such as second and third-order harmonics (g m2, g m3), voltage intercept points (VIP2, VIP3) and 1-dB compression points for the three structures. The results show that the TLSC has a high analog performance due to more g m and provides 16.3%, 48.4% more gain than SLC and DLSC, respectively and it also provides better linearity. All the results are obtained using the VisualTCAD tool.
利用沟道堆叠工程优化三栅极无结 FinFET 的性能,用于数字和模拟/射频设计
本手稿探讨了使用硅锗材料作为沟道的无结三栅极 FinFET 在纳米尺度区域的行为。分析中使用了三种不同的沟道结构:(a) 三层堆叠沟道 (TLSC)(硅-锗-硅);(b) 双层堆叠沟道 (DLSC)(硅-锗-硅);(c) 单层沟道 (SLC)(硅)。在栅极长度为 20 nm 的条件下,观察了这些结构的 I-V 特性、阈下摆动 (SS)、漏极诱导势垒降低 (DIBL)、阈值电压 (Vt)、漏极电流 (ION)、关断电流 (IOFF) 和导通-关断电流比 (ION/IOFF)。结果表明,TLSC 提供的导通电流分别比 DLSC 和 SLC 高 21.3% 和 14.3%。论文还探讨了这三种结构的模拟和射频因素,如输入跨导(gm)、输出跨导(gds)、增益(gm/gds)、跨导产生系数(TGF)、截止频率(fT)、最大振荡频率(fmax)、增益频率积(GFP)以及线性性能参数,如二阶和三阶谐波(gm2、gm3)、电压截取点(VIP2、VIP3)和 1 分贝压缩点。结果表明,TLSC 具有较高的模拟性能,因为其 gm 更大,增益分别比 SLC 和 DLSC 高出 16.3%、48.4%,而且线性度更好。所有结果均使用 VisualTCAD 工具得出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信