Duality of controllability and observability in proportional equal conflict timed continuous Petri Nets

IF 3.7 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
J.L. García-Malacara , César Arzola , Antonio Ramírez-Treviño , C. Renato Vázquez
{"title":"Duality of controllability and observability in proportional equal conflict timed continuous Petri Nets","authors":"J.L. García-Malacara ,&nbsp;César Arzola ,&nbsp;Antonio Ramírez-Treviño ,&nbsp;C. Renato Vázquez","doi":"10.1016/j.nahs.2023.101455","DOIUrl":null,"url":null,"abstract":"<div><p><span>Controllability and observability properties have been widely studied in Timed Continuous Petri Nets (</span><span><math><mrow><mi>T</mi><mi>C</mi><mi>P</mi><mi>N</mi></mrow></math></span>s), a class of <em>piecewise affine systems</em><span>, in order to analyze and control crowded discrete event systems. This work studies the concept of duality applied to </span><span><math><mrow><mi>T</mi><mi>C</mi><mi>P</mi><mi>N</mi></mrow></math></span>s as a vehicle to establish links between controllability and observability, i.e., a synergy to improve the understanding of these properties and to enlarge the class of nets that can be analyzed. To achieve this, we study the concepts of rank-controllability and rank-observability. They capture structural conditions for controllability and observability. Afterwards, the computation of dual nets for Fork-Attribution (<span><math><mrow><mi>F</mi><mi>A</mi></mrow></math></span>), Choice-Free (<span><math><mrow><mi>C</mi><mi>F</mi></mrow></math></span>), Join-Free (<span><math><mrow><mi>J</mi><mi>F</mi></mrow></math></span>), and Proportional Equal Conflict (<span><math><mrow><mi>P</mi><mi>E</mi><mi>Q</mi></mrow></math></span>) <span><math><mrow><mi>T</mi><mi>C</mi><mi>P</mi><mi>N</mi></mrow></math></span>s subclasses are presented. By using the dual definition, several relations between the primal’s controllability and its dual’s observability are stated. Particularly, in <span><math><mrow><mi>F</mi><mi>A</mi></mrow></math></span> rank-controllability and rank-observability are dual properties. In consistent and strongly connected <span><math><mrow><mi>C</mi><mi>F</mi></mrow></math></span>, <span><math><mrow><mi>J</mi><mi>F</mi></mrow></math></span>, and <span><math><mrow><mi>P</mi><mi>E</mi><mi>Q</mi></mrow></math></span> nets, the rank-observability of the dual is sufficient for the rank-controllability of the primal. The opposite implication holds for <span><math><mrow><mi>C</mi><mi>F</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>E</mi><mi>Q</mi></mrow></math></span> if the self-loop places, added by the dual construction methodology, are measurable.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"52 ","pages":"Article 101455"},"PeriodicalIF":3.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X23001267","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Controllability and observability properties have been widely studied in Timed Continuous Petri Nets (TCPNs), a class of piecewise affine systems, in order to analyze and control crowded discrete event systems. This work studies the concept of duality applied to TCPNs as a vehicle to establish links between controllability and observability, i.e., a synergy to improve the understanding of these properties and to enlarge the class of nets that can be analyzed. To achieve this, we study the concepts of rank-controllability and rank-observability. They capture structural conditions for controllability and observability. Afterwards, the computation of dual nets for Fork-Attribution (FA), Choice-Free (CF), Join-Free (JF), and Proportional Equal Conflict (PEQ) TCPNs subclasses are presented. By using the dual definition, several relations between the primal’s controllability and its dual’s observability are stated. Particularly, in FA rank-controllability and rank-observability are dual properties. In consistent and strongly connected CF, JF, and PEQ nets, the rank-observability of the dual is sufficient for the rank-controllability of the primal. The opposite implication holds for CF and PEQ if the self-loop places, added by the dual construction methodology, are measurable.

比例相等冲突定时连续 Petri 网中可控性和可观测性的对偶性
时间连续Petri网(TCPNs)是一类分段仿射系统,为了分析和控制拥挤的离散事件系统,对其可控性和可观测性进行了广泛的研究。这项工作研究了应用于TCPNs的对偶概念,作为在可控性和可观察性之间建立联系的工具,即,提高对这些属性的理解并扩大可以分析的网络类别的协同作用。为此,我们研究了等级-可控性和等级-可观察性的概念。它们捕获了可控性和可观察性的结构条件。然后,给出了分叉属性(FA)、自由选择(CF)、自由连接(JF)和比例等冲突(PEQ) TCPNs子类的双网络计算。利用对偶定义,给出了原物的可控性与其对偶的可观测性之间的若干关系。特别是,秩-可控性和秩-可观察性是对偶性质。在一致且强连接的CF、JF和PEQ网络中,对偶的秩-可观察性足以证明原始网络的秩-可控性。如果通过对偶构造方法添加的自环位置是可测量的,则CF和PEQ的含义相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Analysis-Hybrid Systems
Nonlinear Analysis-Hybrid Systems AUTOMATION & CONTROL SYSTEMS-MATHEMATICS, APPLIED
CiteScore
8.30
自引率
9.50%
发文量
65
审稿时长
>12 weeks
期刊介绍: Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信