{"title":"Inconvenient truths about logistic regression and the remedy of marginal effects","authors":"Michael Howell-Moroney","doi":"10.1111/puar.13786","DOIUrl":null,"url":null,"abstract":"Logistic regression is a standard technique in public administration research. However, there are two inconvenient truths about logistic regression of which scholars should be aware. First, logistic regression results are difficult to interpret. Raw coefficients are expressed in an enigmatic log odds scale and odds ratios are regularly misinterpreted as risk ratios. Second, logistic regression results are non-collapsible, which renders model comparisons invalid. A review of recent public administration articles reveals that these inconvenient truths still plague the discipline. This paper advocates the use of average marginal effects to reckon with both inconvenient truths. Average marginal effects are easy to comprehend because they measure effect sizes on a probability scale. And average marginal effects are collapsible, and hence facilitate valid model comparisons. These concepts are illustrated using data simulations and data from the 2017 Current Population Survey. The paper concludes with suggestions for improved research practice.","PeriodicalId":48431,"journal":{"name":"Public Administration Review","volume":"47 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Administration Review","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1111/puar.13786","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 0
Abstract
Logistic regression is a standard technique in public administration research. However, there are two inconvenient truths about logistic regression of which scholars should be aware. First, logistic regression results are difficult to interpret. Raw coefficients are expressed in an enigmatic log odds scale and odds ratios are regularly misinterpreted as risk ratios. Second, logistic regression results are non-collapsible, which renders model comparisons invalid. A review of recent public administration articles reveals that these inconvenient truths still plague the discipline. This paper advocates the use of average marginal effects to reckon with both inconvenient truths. Average marginal effects are easy to comprehend because they measure effect sizes on a probability scale. And average marginal effects are collapsible, and hence facilitate valid model comparisons. These concepts are illustrated using data simulations and data from the 2017 Current Population Survey. The paper concludes with suggestions for improved research practice.
期刊介绍:
Public Administration Review (PAR), a bi-monthly professional journal, has held its position as the premier outlet for public administration research, theory, and practice for 75 years. Published for the American Society for Public Administration,TM/SM, it uniquely serves both academics and practitioners in the public sector. PAR features articles that identify and analyze current trends, offer a factual basis for decision-making, stimulate discussion, and present leading literature in an easily accessible format. Covering a diverse range of topics and featuring expert book reviews, PAR is both exciting to read and an indispensable resource in the field.