Dean Crnković, Daniel R. Hawtin, Nina Mostarac, Andrea Švob
{"title":"Neighbour-transitive codes in Kneser graphs","authors":"Dean Crnković, Daniel R. Hawtin, Nina Mostarac, Andrea Švob","doi":"10.1016/j.jcta.2023.105850","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>code C</em> is a subset of the vertex set of a graph and <em>C</em> is <em>s-neighbour-transitive</em><span> if its automorphism group </span><span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on each of the first <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> parts <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> of the <em>distance partition</em> <span><math><mo>{</mo><mi>C</mi><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mo>}</mo></math></span>, where <em>ρ</em> is the <span><em>covering radius</em></span> of <em>C</em>. While codes have traditionally been studied in the Hamming and Johnson graphs, we consider here codes in the Kneser graphs. Let Ω be the underlying set on which the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is defined. Our first main result says that if <em>C</em> is a 2-neighbour-transitive code in <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> such that <em>C</em> has minimum distance at least 5, then <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> (<em>i.e., C</em> is a code in an odd graph) and <em>C</em> lies in a particular infinite family or is one particular sporadic example. We then prove several results when <em>C</em> is a neighbour-transitive code in the Kneser graph <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>. First, if <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts intransitively on Ω we characterise <em>C</em> in terms of certain parameters. We then assume that <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts transitively on Ω, first proving that if <em>C</em> has minimum distance at least 3 then either <span><math><mi>K</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span> is an odd graph or <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> has a 2-homogeneous (and hence primitive) action on Ω. We then assume that <em>C</em> is a code in an odd graph and <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>C</mi><mo>)</mo></math></span> acts imprimitively on Ω and characterise <em>C</em> in terms of certain parameters. We give examples in each of these cases and pose several open problems.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"204 ","pages":"Article 105850"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316523001188","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A code C is a subset of the vertex set of a graph and C is s-neighbour-transitive if its automorphism group acts transitively on each of the first parts of the distance partition , where ρ is the covering radius of C. While codes have traditionally been studied in the Hamming and Johnson graphs, we consider here codes in the Kneser graphs. Let Ω be the underlying set on which the Kneser graph is defined. Our first main result says that if C is a 2-neighbour-transitive code in such that C has minimum distance at least 5, then (i.e., C is a code in an odd graph) and C lies in a particular infinite family or is one particular sporadic example. We then prove several results when C is a neighbour-transitive code in the Kneser graph . First, if acts intransitively on Ω we characterise C in terms of certain parameters. We then assume that acts transitively on Ω, first proving that if C has minimum distance at least 3 then either is an odd graph or has a 2-homogeneous (and hence primitive) action on Ω. We then assume that C is a code in an odd graph and acts imprimitively on Ω and characterise C in terms of certain parameters. We give examples in each of these cases and pose several open problems.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.