Eloïse Lebaudy, Chloé Guilbaud-Chéreau, Benoit Frisch, Nihal Engin Vrana, Philippe Lavalle
{"title":"The High Potential of ε-Poly-l-Lysine for the Development of Antimicrobial Biomaterials","authors":"Eloïse Lebaudy, Chloé Guilbaud-Chéreau, Benoit Frisch, Nihal Engin Vrana, Philippe Lavalle","doi":"10.1002/anbr.202300080","DOIUrl":null,"url":null,"abstract":"<p>ε-poly-<span>l</span>-lysine (ε-PLL) is a natural polypeptide/polycation originating from bacteria. Thanks to its antifungal and antibacterial properties, it is the subject of extensive research in the food and medical industries. ε-PLL is also used to develop biomaterials in a broad range of applications, such as drug delivery, wound healing, or antimicrobial coatings. Indeed, loading ε-PLL inside nanoparticles, functionalizing implant surfaces with ε-PLL, or developing hydrogels based on reactions between ε-PLL and other polymers can improve the materials properties, leading to biocompatible, antibacterial, and antifungal systems. These characteristics are necessary not only for the development of biomaterials, for their integrity in a biological environment, but also for improving the performances of medical devices. Moreover, ε-PLL can be used as an alternative to antibiotics as its mechanism of action reduces the bacterial resistance risk compared with antibiotics. Finally, “smart” systems using ε-PLL may be developed, with controllable material degradation or drug delivery via pH or temperature variations. This review sought to gather the latest research on the development of antimicrobial biomaterials based on the ε-PLL polypeptide.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300080","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ε-poly-l-lysine (ε-PLL) is a natural polypeptide/polycation originating from bacteria. Thanks to its antifungal and antibacterial properties, it is the subject of extensive research in the food and medical industries. ε-PLL is also used to develop biomaterials in a broad range of applications, such as drug delivery, wound healing, or antimicrobial coatings. Indeed, loading ε-PLL inside nanoparticles, functionalizing implant surfaces with ε-PLL, or developing hydrogels based on reactions between ε-PLL and other polymers can improve the materials properties, leading to biocompatible, antibacterial, and antifungal systems. These characteristics are necessary not only for the development of biomaterials, for their integrity in a biological environment, but also for improving the performances of medical devices. Moreover, ε-PLL can be used as an alternative to antibiotics as its mechanism of action reduces the bacterial resistance risk compared with antibiotics. Finally, “smart” systems using ε-PLL may be developed, with controllable material degradation or drug delivery via pH or temperature variations. This review sought to gather the latest research on the development of antimicrobial biomaterials based on the ε-PLL polypeptide.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.