CD117-Targeted Intraoperative Imaging of Gastrointestinal Stromal Tumor Using a Stem-Cell-Factor-Labeled Fluorophore

IF 4 Q2 ENGINEERING, BIOMEDICAL
Shinsuke Nomura, Shinya Yokomizo, Zhidong Wang, Homan Kang, Kai Bao, Chengeng Yang, Brian P. Rubin, Roderick Bronson, Satoshi Kashiwagi, Hak Soo Choi
{"title":"CD117-Targeted Intraoperative Imaging of Gastrointestinal Stromal Tumor Using a Stem-Cell-Factor-Labeled Fluorophore","authors":"Shinsuke Nomura,&nbsp;Shinya Yokomizo,&nbsp;Zhidong Wang,&nbsp;Homan Kang,&nbsp;Kai Bao,&nbsp;Chengeng Yang,&nbsp;Brian P. Rubin,&nbsp;Roderick Bronson,&nbsp;Satoshi Kashiwagi,&nbsp;Hak Soo Choi","doi":"10.1002/anbr.202300063","DOIUrl":null,"url":null,"abstract":"<p>Complete resection without damaging the capsule is the gold-standard surgical approach for nonmetastatic gastrointestinal stromal tumors (GIST). However, accurately locating tumors during surgery is challenging because GIST is covered by normal mucosal tissue, leading to suboptimal surgeries and increased cancer recurrence rates. To enhance surgical care for GIST, a cutting-edge near-infrared (NIR) fluorescent nanoprobe is presented that enables real-time navigation of GIST by specifically targeting CD117, a protein frequently overexpressed in GIST. By attaching a zwitterionic NIR fluorophore called ZW800-1C to a CD117 ligand, stem cell factor (SCF), precise targeting is achieved while minimizing nonspecific tissue interactions. In in vitro studies, the high affinity of nanoprobe for CD117-positive GIST-T1 cell lines is demonstrated, while exhibiting no binding to CD117-negative cells or GIST-5 R cells. In a xenograft model of GIST-T1 in mice, the nanoprobe produces strong and persistent NIR signals that last over 72 h following a single intravenous injection. Moreover, the nanoprobe successfully detects spontaneous tumors in the cecum of heterozygous Kit K641E mice. In these findings, the promise of CD117-targeted molecular imaging is highlighted as an intraoperative strategy for GIST. Furthermore, this imaging approach holds potential for early diagnosis, as well as monitoring GIST prognosis before and after surgical resection.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300063","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Complete resection without damaging the capsule is the gold-standard surgical approach for nonmetastatic gastrointestinal stromal tumors (GIST). However, accurately locating tumors during surgery is challenging because GIST is covered by normal mucosal tissue, leading to suboptimal surgeries and increased cancer recurrence rates. To enhance surgical care for GIST, a cutting-edge near-infrared (NIR) fluorescent nanoprobe is presented that enables real-time navigation of GIST by specifically targeting CD117, a protein frequently overexpressed in GIST. By attaching a zwitterionic NIR fluorophore called ZW800-1C to a CD117 ligand, stem cell factor (SCF), precise targeting is achieved while minimizing nonspecific tissue interactions. In in vitro studies, the high affinity of nanoprobe for CD117-positive GIST-T1 cell lines is demonstrated, while exhibiting no binding to CD117-negative cells or GIST-5 R cells. In a xenograft model of GIST-T1 in mice, the nanoprobe produces strong and persistent NIR signals that last over 72 h following a single intravenous injection. Moreover, the nanoprobe successfully detects spontaneous tumors in the cecum of heterozygous Kit K641E mice. In these findings, the promise of CD117-targeted molecular imaging is highlighted as an intraoperative strategy for GIST. Furthermore, this imaging approach holds potential for early diagnosis, as well as monitoring GIST prognosis before and after surgical resection.

Abstract Image

使用干细胞因子标记的荧光团对胃肠道间质瘤进行 CD117 靶向术中成像
完全切除而不损伤囊是治疗非转移性胃肠道间质瘤(GIST)的金标准手术方法。然而,在手术中准确定位肿瘤是具有挑战性的,因为GIST被正常粘膜组织覆盖,导致手术不理想和癌症复发率增加。为了加强GIST的外科护理,一种尖端的近红外(NIR)荧光纳米探针通过特异性靶向CD117(一种在GIST中经常过表达的蛋白质)实现GIST的实时导航。通过将称为ZW800-1C的两性离子近红外荧光团连接到CD117配体,干细胞因子(SCF),可以实现精确靶向,同时最大限度地减少非特异性组织相互作用。在体外研究中,纳米探针对cd117阳性的GIST-T1细胞系具有高亲和力,而与cd117阴性的细胞或gist - 5r细胞没有结合。在小鼠GIST-T1异种移植模型中,纳米探针在单次静脉注射后产生强烈且持续的近红外信号,持续72小时以上。此外,纳米探针成功地检测了杂合子Kit K641E小鼠盲肠中的自发肿瘤。在这些发现中,靶向cd117的分子成像被强调为GIST的术中策略。此外,这种成像方法具有早期诊断的潜力,以及在手术切除前后监测GIST预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信