Multifunctional Nanoparticles and Nanoclusters as a Theranostics and Symptoms Disappearing Agent for Traumatic Brain Injury

IF 4 Q2 ENGINEERING, BIOMEDICAL
Fong LaiGuan Zoey, Krishna Kanta Ghosh, Mathangi Palanivel, Balázs Gulyás, Parasuraman Padmanabhan
{"title":"Multifunctional Nanoparticles and Nanoclusters as a Theranostics and Symptoms Disappearing Agent for Traumatic Brain Injury","authors":"Fong LaiGuan Zoey,&nbsp;Krishna Kanta Ghosh,&nbsp;Mathangi Palanivel,&nbsp;Balázs Gulyás,&nbsp;Parasuraman Padmanabhan","doi":"10.1002/anbr.202300010","DOIUrl":null,"url":null,"abstract":"<p>Traumatic brain injury (TBI) is one of the most common causes of disability and mortality worldwide, creating a large socioeconomic burden annually. Secondary injury physiopathology is known to play a prominent role in exacerbating neurodegeneration post-TBI and is potentially preventable by therapies. However, due to the heterogeneity of TBI and the complexity of the pathological mechanisms that ensue, there are currently no effective disease-modifying treatments to prevent TBI-associated disability and mortality. Nanotechnology has emerged in recent decades as a promising platform for the development of multifunctional neuroprotective agents for TBI. Herein, current multifunctional innovations are explored in this review in nanotechnology, which target the secondary injury pathological mechanisms of TBI and show promise in improving future post-TBI management. Also, potential new directions for the future development of TBI treatment are discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) is one of the most common causes of disability and mortality worldwide, creating a large socioeconomic burden annually. Secondary injury physiopathology is known to play a prominent role in exacerbating neurodegeneration post-TBI and is potentially preventable by therapies. However, due to the heterogeneity of TBI and the complexity of the pathological mechanisms that ensue, there are currently no effective disease-modifying treatments to prevent TBI-associated disability and mortality. Nanotechnology has emerged in recent decades as a promising platform for the development of multifunctional neuroprotective agents for TBI. Herein, current multifunctional innovations are explored in this review in nanotechnology, which target the secondary injury pathological mechanisms of TBI and show promise in improving future post-TBI management. Also, potential new directions for the future development of TBI treatment are discussed.

Abstract Image

作为创伤性脑损伤的治疗和症状消失剂的多功能纳米粒子和纳米团簇
创伤性脑损伤(TBI)是世界范围内最常见的致残和死亡原因之一,每年造成巨大的社会经济负担。已知继发性损伤生理病理在tbi后神经退行性恶化中起着突出作用,并且可能通过治疗来预防。然而,由于创伤性脑损伤的异质性和随之而来的病理机制的复杂性,目前还没有有效的疾病改善治疗来预防创伤性脑损伤相关的残疾和死亡。近几十年来,纳米技术已经成为开发多功能脑外伤神经保护剂的一个有前途的平台。在此,本文综述了目前在纳米技术方面的多功能创新,这些创新针对TBI的继发性损伤病理机制,并有望改善未来的TBI后治疗。并对创伤性脑损伤治疗的新方向进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信