Gold Nanoclusters for Tumor Diagnosis and Treatment

IF 4 Q2 ENGINEERING, BIOMEDICAL
Shiqun Chen, Shasha Li, Yili Wang, Zuohong Chen, Hao Wang, Xiao-Dong Zhang
{"title":"Gold Nanoclusters for Tumor Diagnosis and Treatment","authors":"Shiqun Chen,&nbsp;Shasha Li,&nbsp;Yili Wang,&nbsp;Zuohong Chen,&nbsp;Hao Wang,&nbsp;Xiao-Dong Zhang","doi":"10.1002/anbr.202300082","DOIUrl":null,"url":null,"abstract":"<p>Nanomedicine shows remarkable potential to improve the efficacy of diagnosis and treatment of tumors, utilizing nanotechnologies and nanomaterials. Gold nanoclusters (AuNCs) have emerged as a highly promising option due to their exceptional optical and enzyme-mimicking catalytic activities as well as good biocompatibility. The renal clearable clusters can enrich in the tumors upon their enhanced permeability and retention properties, which benefits the tumor-related applications. The fluorescence of AuNCs in the second near-infrared region possesses extraordinary penetration depth and high temporal–spatial resolution, enabling excellent in vivo imaging and real-time monitoring of pathological process. AuNC-based nanoplatforms represent a paradigm of integrated, efficient, intelligent, and safe treatment strategy, extending personalized tumor therapy. Meanwhile, the optical and biocatalytic properties can be modulated by adopting the atom/ligand engineering, which further enhances the efficacy of AuNCs. Herein, the advances of AuNCs in the field of diagnosis and treatment of tumors are summarized and the directions to be improved are proposed to promote the clinical translation of the AuNCs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"3 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300082","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomedicine shows remarkable potential to improve the efficacy of diagnosis and treatment of tumors, utilizing nanotechnologies and nanomaterials. Gold nanoclusters (AuNCs) have emerged as a highly promising option due to their exceptional optical and enzyme-mimicking catalytic activities as well as good biocompatibility. The renal clearable clusters can enrich in the tumors upon their enhanced permeability and retention properties, which benefits the tumor-related applications. The fluorescence of AuNCs in the second near-infrared region possesses extraordinary penetration depth and high temporal–spatial resolution, enabling excellent in vivo imaging and real-time monitoring of pathological process. AuNC-based nanoplatforms represent a paradigm of integrated, efficient, intelligent, and safe treatment strategy, extending personalized tumor therapy. Meanwhile, the optical and biocatalytic properties can be modulated by adopting the atom/ligand engineering, which further enhances the efficacy of AuNCs. Herein, the advances of AuNCs in the field of diagnosis and treatment of tumors are summarized and the directions to be improved are proposed to promote the clinical translation of the AuNCs.

Abstract Image

用于肿瘤诊断和治疗的纳米金簇
纳米医学利用纳米技术和纳米材料,在提高肿瘤的诊断和治疗效果方面显示出巨大的潜力。金纳米团簇(aunc)由于其优异的光学和酶模拟催化活性以及良好的生物相容性而成为一种非常有前途的选择。肾透明团簇可在肿瘤中富集,增强其渗透性和滞留性,有利于肿瘤相关的应用。aunc在第二近红外区的荧光具有非凡的穿透深度和高时空分辨率,可以实现出色的体内成像和病理过程的实时监测。基于aunc的纳米平台代表了一种集成、高效、智能和安全的治疗策略范例,扩展了个性化的肿瘤治疗。同时,通过原子/配体工程可以调节aunc的光学和生物催化性能,进一步提高了aunc的功效。本文综述了AuNCs在肿瘤诊断和治疗领域的研究进展,并提出了有待改进的方向,以促进AuNCs的临床转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信