Small Papillae Regulated by SPD25 are Critical for Balancing Photosynthetic CO2 Assimilation and Water Loss in Rice

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2023-12-13 DOI:10.1186/s12284-023-00676-7
Lin Zhu, Faliang Zeng, Yinpei Liang, Qi Wang, Hongwei Chen, Pulin Feng, Mingqian Fan, Yanshuang Cheng, Jiayu Wang
{"title":"Small Papillae Regulated by SPD25 are Critical for Balancing Photosynthetic CO2 Assimilation and Water Loss in Rice","authors":"Lin Zhu, Faliang Zeng, Yinpei Liang, Qi Wang, Hongwei Chen, Pulin Feng, Mingqian Fan, Yanshuang Cheng, Jiayu Wang","doi":"10.1186/s12284-023-00676-7","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>The leaf epidermis plays an important role in the transmission of light and the regulation of water and gas exchange, which influences the photosynthesis of mesophyll cells. Small papillae (SP) are one of the important structural elements of the leaf epidermis. The mechanism of the effect that small papillae have on rice leaf photosynthetic performance remains unclear.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In this study, a <i>small papilla deficient 25</i> (<i>spd25</i>) mutant was isolated from <i>japonica</i> rice Longjin1. Small papillae were absent on the adaxial and abaxial leaf surfaces of the <i>spd25</i> mutant and the silicon and cuticular wax content in the <i>spd25</i> mutant leaves decreased. Map-based cloning and functional analysis revealed that <i>SPD25</i>, encoding a guanine nucleotide exchange factor for Rop, is a novel allele of <i>OsRopGEF10</i>. The <i>spd25</i> mutant showed an increased water loss rate and reduced relative water content. The lower stomatal conductance in the <i>spd25</i> mutant prevented water loss but decreased the intercellular CO<sub>2</sub> concentration and net assimilation rate. The fluorescence parameters showed that the inhibited CO<sub>2</sub> assimilation reaction feedback regulated the photochemical electron-transfer reaction, but the performance of Photosystem II was stable. Further analysis indicated that the excess light energy absorbed by the <i>spd25</i> mutant was dissipated in the form of non-photochemical quenching to avoid photodamage through the optical properties of small papillae.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p><i>SPD25</i> regulates the development of small papillae on the surface of rice leaves, which play an important role in balancing photosynthetic gas exchange and water loss. This study deepens our understanding of the physiological mechanisms by which small papillae affect photosynthetic performance.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"288 1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-023-00676-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The leaf epidermis plays an important role in the transmission of light and the regulation of water and gas exchange, which influences the photosynthesis of mesophyll cells. Small papillae (SP) are one of the important structural elements of the leaf epidermis. The mechanism of the effect that small papillae have on rice leaf photosynthetic performance remains unclear.

Results

In this study, a small papilla deficient 25 (spd25) mutant was isolated from japonica rice Longjin1. Small papillae were absent on the adaxial and abaxial leaf surfaces of the spd25 mutant and the silicon and cuticular wax content in the spd25 mutant leaves decreased. Map-based cloning and functional analysis revealed that SPD25, encoding a guanine nucleotide exchange factor for Rop, is a novel allele of OsRopGEF10. The spd25 mutant showed an increased water loss rate and reduced relative water content. The lower stomatal conductance in the spd25 mutant prevented water loss but decreased the intercellular CO2 concentration and net assimilation rate. The fluorescence parameters showed that the inhibited CO2 assimilation reaction feedback regulated the photochemical electron-transfer reaction, but the performance of Photosystem II was stable. Further analysis indicated that the excess light energy absorbed by the spd25 mutant was dissipated in the form of non-photochemical quenching to avoid photodamage through the optical properties of small papillae.

Conclusions

SPD25 regulates the development of small papillae on the surface of rice leaves, which play an important role in balancing photosynthetic gas exchange and water loss. This study deepens our understanding of the physiological mechanisms by which small papillae affect photosynthetic performance.

Abstract Image

受 SPD25 调控的小乳突对平衡水稻光合作用的二氧化碳同化和水分损失至关重要
叶表皮在光的传递和水、气的交换中起着重要的调节作用,影响着叶肉细胞的光合作用。小乳头(SP)是叶表皮的重要结构成分之一。小乳头对水稻叶片光合性能影响的机制尚不清楚。结果从粳稻龙金1号中分离到一个小乳头缺陷25 (spd25)突变体。spd25突变体叶片正面和背面没有小乳头状突起,叶片中硅和角质层蜡含量降低。基于图谱的克隆和功能分析表明,SPD25是OsRopGEF10的一个新等位基因,它编码Rop的鸟嘌呤核苷酸交换因子。spd25突变体的失水速率增加,相对含水量降低。spd25突变体较低的气孔导度阻止了水分的流失,但降低了细胞间CO2浓度和净同化速率。荧光参数表明,抑制CO2同化反应反馈调节光化学电子转移反应,但光系统II性能稳定。进一步分析表明,spd25突变体吸收的多余光能通过小乳头的光学特性以非光化学猝灭的形式耗散,避免了光损伤。结论spd25调控水稻叶片表面小乳头的发育,在平衡光合气体交换和水分流失中起重要作用。这项研究加深了我们对小乳头影响光合作用的生理机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信