Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Beta vulgaris), confers enhanced salt tolerance in transgenic tobacco
Xin-Miao Zhang, Guo-Qiang Wu, Ming Wei, Hong-Xia Kang
{"title":"Overexpression of BvNHX1, a novel tonoplast Na+/H+ antiporter gene from sugar beet (Beta vulgaris), confers enhanced salt tolerance in transgenic tobacco","authors":"Xin-Miao Zhang, Guo-Qiang Wu, Ming Wei, Hong-Xia Kang","doi":"10.1007/s13562-023-00868-8","DOIUrl":null,"url":null,"abstract":"<p>Salinity is one of the major environmental factors that limit the plant growth and crop productivity worldwide. Tonoplast Na<sup>+</sup>/H<sup>+</sup> transporters (NHXs) play crucial roles in regulating the intracellular Na<sup>+</sup>/K<sup>+</sup> and pH homoeostasis, which is essential for salt tolerance and development of plants. In the present study, a novel gene <i>BvNHX1</i> encoding tonoplast Na<sup>+</sup>/H<sup>+</sup> antiporter was isolated in natrophilic crop sugar beet (<i>Beta</i> <i>vulgaris</i>) and functionally characterized in tobacco (<i>Nicotiana</i> <i>tabacum</i>) plants to assess the behavior of the transgenic organisms in the response to salt stress. The results showed that overexpression of <i>BvNHX1</i> significantly enhanced salt tolerance in transgenic tobacco plants compared with wild-type (WT) plants. The seed germination, root length, plant height, and fresh and dry weights in transgenic plants were significantly higher than those in WT plants under salt stresses. The contents of leaf relative water, chlorophyll, proline, soluble sugars, and soluble proteins were significantly higher as compared with WT plants, while malondialdehyde (MDA) contents were significantly lower than those of WT plants under salt stresses. Na<sup>+</sup> and K<sup>+</sup> contents both in shoots and roots of transgenic plants were significantly higher than those of WT plants, and transgenic plants maintained a balanced K<sup>+</sup>/Na<sup>+</sup> ratio under saline conditions. Taken together, these results suggested that overexpression of <i>BvNHX1</i> reduced damage to cell membrane by reducing osmotic potential of cells, and maintaining relative water and chlorophyll contents of leaves, and finally improved salt tolerance in transgenic tobacco plants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-023-00868-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity is one of the major environmental factors that limit the plant growth and crop productivity worldwide. Tonoplast Na+/H+ transporters (NHXs) play crucial roles in regulating the intracellular Na+/K+ and pH homoeostasis, which is essential for salt tolerance and development of plants. In the present study, a novel gene BvNHX1 encoding tonoplast Na+/H+ antiporter was isolated in natrophilic crop sugar beet (Betavulgaris) and functionally characterized in tobacco (Nicotianatabacum) plants to assess the behavior of the transgenic organisms in the response to salt stress. The results showed that overexpression of BvNHX1 significantly enhanced salt tolerance in transgenic tobacco plants compared with wild-type (WT) plants. The seed germination, root length, plant height, and fresh and dry weights in transgenic plants were significantly higher than those in WT plants under salt stresses. The contents of leaf relative water, chlorophyll, proline, soluble sugars, and soluble proteins were significantly higher as compared with WT plants, while malondialdehyde (MDA) contents were significantly lower than those of WT plants under salt stresses. Na+ and K+ contents both in shoots and roots of transgenic plants were significantly higher than those of WT plants, and transgenic plants maintained a balanced K+/Na+ ratio under saline conditions. Taken together, these results suggested that overexpression of BvNHX1 reduced damage to cell membrane by reducing osmotic potential of cells, and maintaining relative water and chlorophyll contents of leaves, and finally improved salt tolerance in transgenic tobacco plants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.