Magdalena M Olchawa , Grzegorz Szewczyk , Marva Lachish , Tadeusz Sarna , Daphne Atlas
{"title":"SuperDopa (SD), SuperDopa amide (SDA) and Thioredoxin-mimetic peptides protect ARPE-19 cells from photic- and non-photic stress","authors":"Magdalena M Olchawa , Grzegorz Szewczyk , Marva Lachish , Tadeusz Sarna , Daphne Atlas","doi":"10.1016/j.jpap.2023.100225","DOIUrl":null,"url":null,"abstract":"<div><p>Oxidative stress and inflammation in the retinal pigment epithelium (RPE) cells have been identified as significant risk factors in the development and progression of retinal associated diseases including age-related macular degeneration (AMD). In addition, AMD and myopia have been associated with impaired dopamine activity. Treatment of RPE cells with antioxidants or high concentrations of <span>l</span>-DOPA (levodopa), which down-regulates vascular endothelial growth factor (VEGF) via a G-protein-coupled receptor GPR143, slow AMD progression. To develop a targeted and effective treatment aimed at improving the viability of RPE cells we examined small molecular weight thiol-based and levodopa containing molecules. These include the N-acetylcysteine amide (AD4/NACA), SuperDopa-Amide (SDA), and members of the thioredoxin mimetic (TXM) family of peptides, TXM-CB13, TXM-CB30, and SuperDopa (SD). We show that these antioxidant/anti-inflammatory reagents protect ARPE-19 cells from photic stress mediated by rose Bengal (rB) and rhodopsin-rich POS, and from non-photic stress induced by oxidation with sodium iodate. Protection is correlated with a reduction in DPPH radical and singlet-oxygen quenching. Compared to GSH the bimolecular rate-constants of singlet oxygen quenching in aqueous solution by the levodopa derivatives SD and SDA were two-fold higher. Inhibition of auranofin-induced activation of the mitogen-activation-kinases (MAPK's) JNK1/2 and ERK1/2 confirmed the antioxidant/anti-inflammatory activity of the thiol-levodopa derivatives. The antioxidant and radical scavenging activities of TXM-CB13 and TXM-CB30, or SD and SDA, which combine redox activity with elevating cellular levodopa, might offer an efficient protection of RPE cells. These retino-protective peptides are potential drug candidates destined for slowing the onset and/or progression of RPE-related disorders.</p></div>","PeriodicalId":375,"journal":{"name":"Journal of Photochemistry and Photobiology","volume":"19 ","pages":"Article 100225"},"PeriodicalIF":3.2610,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666469023000660/pdfft?md5=cb8e94de764c17a08052405da63caeb5&pid=1-s2.0-S2666469023000660-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology","FirstCategoryId":"2","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666469023000660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress and inflammation in the retinal pigment epithelium (RPE) cells have been identified as significant risk factors in the development and progression of retinal associated diseases including age-related macular degeneration (AMD). In addition, AMD and myopia have been associated with impaired dopamine activity. Treatment of RPE cells with antioxidants or high concentrations of l-DOPA (levodopa), which down-regulates vascular endothelial growth factor (VEGF) via a G-protein-coupled receptor GPR143, slow AMD progression. To develop a targeted and effective treatment aimed at improving the viability of RPE cells we examined small molecular weight thiol-based and levodopa containing molecules. These include the N-acetylcysteine amide (AD4/NACA), SuperDopa-Amide (SDA), and members of the thioredoxin mimetic (TXM) family of peptides, TXM-CB13, TXM-CB30, and SuperDopa (SD). We show that these antioxidant/anti-inflammatory reagents protect ARPE-19 cells from photic stress mediated by rose Bengal (rB) and rhodopsin-rich POS, and from non-photic stress induced by oxidation with sodium iodate. Protection is correlated with a reduction in DPPH radical and singlet-oxygen quenching. Compared to GSH the bimolecular rate-constants of singlet oxygen quenching in aqueous solution by the levodopa derivatives SD and SDA were two-fold higher. Inhibition of auranofin-induced activation of the mitogen-activation-kinases (MAPK's) JNK1/2 and ERK1/2 confirmed the antioxidant/anti-inflammatory activity of the thiol-levodopa derivatives. The antioxidant and radical scavenging activities of TXM-CB13 and TXM-CB30, or SD and SDA, which combine redox activity with elevating cellular levodopa, might offer an efficient protection of RPE cells. These retino-protective peptides are potential drug candidates destined for slowing the onset and/or progression of RPE-related disorders.