Usman Abdulfatai , Stephen Ejeh , Abduljelil Ajala , Samuel Ndaghiya Adawara , Olasupo Sabitu Babatunde , Zakari Ya'u Ibrahim
{"title":"QSAR, molecular docking, and molecular designs of some anti-epilepsy compounds","authors":"Usman Abdulfatai , Stephen Ejeh , Abduljelil Ajala , Samuel Ndaghiya Adawara , Olasupo Sabitu Babatunde , Zakari Ya'u Ibrahim","doi":"10.1016/j.ipha.2023.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>Epilepsy is a non-communicable central nervous system (CNS) disease that accounts for approximately 0.8–1.2 % of the global population at any time. The hyper-activities of gamma butyric acid aminotransferase (GABA<sub>AT</sub>) enzyme have been confirmed to be largely responsible for seizure/epilepsy. Because of this special function, the GABA<sub>AT</sub> enzyme has been the main target of many anti-epilepsy drugs (AEDs). To date, many discovered AEDs have not eradicated this neurological disease. Since experimental determinations of modern drugs are usually costly and sometimes non-eco-friendly, in-silco quantitative structure–activity relationship (QSAR)-machine learning, docking and pharmacokinetics (PMK) techniques were used to design and test the oral bio-availabilities of all the designed AEDs. QSAR models were generated, and the predictive properties of R<sup>2</sup>int = 0.9827, R<sup>2</sup>ext = 0.9407, and R<sup>2</sup>adj of 0.9667 indicate the evidence that the developed model was not by chance. Six (6) new AEDs were newly designed, and they were found to have better anti-epileptic activities values of 2.146799, 2.224866, 2.31479, 2.450313, 2.301474, and 2.618303 than the standard AED, Vigabatrin (0.40672). Also, the docked new compounds shows excellent binding energies of −127.001, −129.071, −130.515, −126.881, −130.771, and −126.974 kcal/mol compared to the referenced AED (−76.9173 kcal/mol). The PMK and absorption, distribution, metabolism, excretion, and toxicity (ADMET) investigations also revealed that all the designed compounds were found to be bio-available for human administration. 'Therefore, the newly designed analogues (AEDs) could be considered as potential drug candidates for the treatment of epilepsy.</p></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"2 3","pages":"Pages 427-434"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949866X23001259/pdfft?md5=b5d5a294d721cc4faafe33be21511ebc&pid=1-s2.0-S2949866X23001259-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X23001259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is a non-communicable central nervous system (CNS) disease that accounts for approximately 0.8–1.2 % of the global population at any time. The hyper-activities of gamma butyric acid aminotransferase (GABAAT) enzyme have been confirmed to be largely responsible for seizure/epilepsy. Because of this special function, the GABAAT enzyme has been the main target of many anti-epilepsy drugs (AEDs). To date, many discovered AEDs have not eradicated this neurological disease. Since experimental determinations of modern drugs are usually costly and sometimes non-eco-friendly, in-silco quantitative structure–activity relationship (QSAR)-machine learning, docking and pharmacokinetics (PMK) techniques were used to design and test the oral bio-availabilities of all the designed AEDs. QSAR models were generated, and the predictive properties of R2int = 0.9827, R2ext = 0.9407, and R2adj of 0.9667 indicate the evidence that the developed model was not by chance. Six (6) new AEDs were newly designed, and they were found to have better anti-epileptic activities values of 2.146799, 2.224866, 2.31479, 2.450313, 2.301474, and 2.618303 than the standard AED, Vigabatrin (0.40672). Also, the docked new compounds shows excellent binding energies of −127.001, −129.071, −130.515, −126.881, −130.771, and −126.974 kcal/mol compared to the referenced AED (−76.9173 kcal/mol). The PMK and absorption, distribution, metabolism, excretion, and toxicity (ADMET) investigations also revealed that all the designed compounds were found to be bio-available for human administration. 'Therefore, the newly designed analogues (AEDs) could be considered as potential drug candidates for the treatment of epilepsy.