{"title":"Recycling of HIPS and multilayer films with SEBS based additives","authors":"Elangovan Kasi, Vishwa Krishnakumar","doi":"10.1680/jnaen.23.00045","DOIUrl":null,"url":null,"abstract":"With the evolution of new polymers and an increase in their scope for applications, the use of natural resources such as petroleum products for polymer production has seen a drastic increase in the past few years. With production rates higher than ever and rapid, unsafe disposal of used polymers, it has taken a toll on the environment and other species through pollution. Even though there are alternative solutions, including bioplastics manufactured from greener sources and biodegradable plastics that can disintegrate in a shorter time period, these alternatives are currently in their early stages and hence expensive. They are also more challenging to meet the high demands in terms of both quantity and properties. The next nearest alternative, recycling, is another best available solution to avoid plastic waste entering landfills and to reduce raw material demands. This study aims to determine the effectiveness of a newly introduced SEBS-based property enhancer (WinMod 300) with disposed HIPS (High Impact Polystyrene) and a Maleic Anhydride-grafted SEBS compatibilizer (WinMod 110) with disposed multilayer films (LDPE and Polyester layers). Recycled compounds were tested for necessary and significant mechanical properties and material characterization techniques, and the results are presented in this study.","PeriodicalId":44365,"journal":{"name":"Nanomaterials and Energy","volume":" 44","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jnaen.23.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the evolution of new polymers and an increase in their scope for applications, the use of natural resources such as petroleum products for polymer production has seen a drastic increase in the past few years. With production rates higher than ever and rapid, unsafe disposal of used polymers, it has taken a toll on the environment and other species through pollution. Even though there are alternative solutions, including bioplastics manufactured from greener sources and biodegradable plastics that can disintegrate in a shorter time period, these alternatives are currently in their early stages and hence expensive. They are also more challenging to meet the high demands in terms of both quantity and properties. The next nearest alternative, recycling, is another best available solution to avoid plastic waste entering landfills and to reduce raw material demands. This study aims to determine the effectiveness of a newly introduced SEBS-based property enhancer (WinMod 300) with disposed HIPS (High Impact Polystyrene) and a Maleic Anhydride-grafted SEBS compatibilizer (WinMod 110) with disposed multilayer films (LDPE and Polyester layers). Recycled compounds were tested for necessary and significant mechanical properties and material characterization techniques, and the results are presented in this study.