Desenvolvimento de rede neural convolucional para o diagnóstico radiográfico de osteoartrite dos joelhos no ELSA-Brasil Musculoesquelético

Q3 Medicine
Júlio Guerra Domingues, Daniella Castro Araujo, Luciana Costa-Silva, A. Machado, Luciana Andrade Carneiro Machado, Adriano Alonso Veloso, S. M. Barreto, Rosa Weiss Telles
{"title":"Desenvolvimento de rede neural convolucional para o diagnóstico radiográfico de osteoartrite dos joelhos no ELSA-Brasil Musculoesquelético","authors":"Júlio Guerra Domingues, Daniella Castro Araujo, Luciana Costa-Silva, A. Machado, Luciana Andrade Carneiro Machado, Adriano Alonso Veloso, S. M. Barreto, Rosa Weiss Telles","doi":"10.1590/0100-3984.2023.0020","DOIUrl":null,"url":null,"abstract":"Resumo Objetivo: Desenvolver um modelo computacional - rede neural convolucional (RNC) - treinado com radiografias da linha de base do Estudo Longitudinal de Saúde do Adulto Musculoesquelético (ELSA-Brasil Musculoesquelético), para a classificação automática de osteoartrite dos joelhos. Materiais e Métodos: Trata-se de um estudo transversal abrangendo todos os exames da linha de base do ELSA-Brasil Musculoesquelético (5.660 radiografias dos joelhos em incidência posteroanterior). Os exames foram interpretados por médico radiologista com treinamento específico e calibração previamente publicada. Resultados: A RNC desenvolvida apresentou área sob a curva característica de operação do receptor de 0,866 (IC 95%: 0,842-0,882). O modelo pode ser calibrado para alcançar, não simultaneamente, valores máximos de 0,907 para acurácia, 0,938 para sensibilidade e 0,994 para especificidade. Conclusão: A RNC desenvolvida pode ser utilizada como ferramenta de triagem, reduzindo o número total de exames avaliados pelos radiologistas do estudo, e/ou como ferramenta de segunda leitura, contribuindo com a redução de possíveis erros de interpretação.","PeriodicalId":20842,"journal":{"name":"Radiologia Brasileira","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Brasileira","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0100-3984.2023.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Resumo Objetivo: Desenvolver um modelo computacional - rede neural convolucional (RNC) - treinado com radiografias da linha de base do Estudo Longitudinal de Saúde do Adulto Musculoesquelético (ELSA-Brasil Musculoesquelético), para a classificação automática de osteoartrite dos joelhos. Materiais e Métodos: Trata-se de um estudo transversal abrangendo todos os exames da linha de base do ELSA-Brasil Musculoesquelético (5.660 radiografias dos joelhos em incidência posteroanterior). Os exames foram interpretados por médico radiologista com treinamento específico e calibração previamente publicada. Resultados: A RNC desenvolvida apresentou área sob a curva característica de operação do receptor de 0,866 (IC 95%: 0,842-0,882). O modelo pode ser calibrado para alcançar, não simultaneamente, valores máximos de 0,907 para acurácia, 0,938 para sensibilidade e 0,994 para especificidade. Conclusão: A RNC desenvolvida pode ser utilizada como ferramenta de triagem, reduzindo o número total de exames avaliados pelos radiologistas do estudo, e/ou como ferramenta de segunda leitura, contribuindo com a redução de possíveis erros de interpretação.
在 ELSA 巴西肌肉骨骼计划中开发用于膝关节骨性关节炎放射诊断的卷积神经网络
摘要目的:建立一个计算机模型——卷积神经网络(RNC)——以成人肌肉骨骼健康纵向研究(ELSA- brasil musculoesqueletico)的基线x线照片为训练对象,用于膝关节骨关节炎的自动分类。材料和方法:这是一项横断面研究,涵盖了ELSA-Brasil肌肉骨骼基线的所有检查(5,660张膝关节前后发病率的x线片)。这些检查由经过专门培训和校准的放射科医生解释。结果:所开发的RNC在接收机操作特征曲线下的面积为0.866 (95% ci: 0.842 - 0.882)。该模型可以校准到,而不是同时达到最大值0.907的准确性,0.938的敏感性和0.994的特异性。结论:所开发的RNC可作为一种筛选工具,减少研究放射科医生评估的检查总数,和/或作为二读工具,有助于减少可能的解释错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiologia Brasileira
Radiologia Brasileira Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.60
自引率
0.00%
发文量
75
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信