{"title":"Analytical crystal-field models applied to compounds doped with Eu3+","authors":"Marcos A. Couto dos Santos","doi":"10.1016/j.omx.2023.100279","DOIUrl":null,"url":null,"abstract":"<div><p>The point charge electrostatic model (PCEM) and the simple overlap model (SOM), both purely analytical crystal field models, are being briefly revisited, in order to show the evolution of their application to Eu doped compounds. Calculations are made through the method of equivalent nearest neighbours (MENN), and applied to the Eu(dipivaloylmethanate)<sub>3</sub>1,10-phenanthroline [Eu(DPM)<sub>3</sub>o-phen] complex, with the aim of discussing the Eu–O and Eu–N interactions. The charge of the Eu ion is calculated using the Batista-Longo improved model (BLIM) to give g<sub>BLIM</sub> = 3,64e around the Eu-NN midpoint. The <sup>7</sup>F<sub>1</sub> crystal-field levels and level splitting were satisfactorily reproduced with two charge factors, namely, g<sub>1</sub> = 0.495 and g<sub>2</sub> = 0.415, assuming the luminescent site in a tetragonal point symmetry slightly distorted. In particular, it is shown that the Eu<sup>3+</sup>, itself, is satisfied by attracting an amount of charge, which neutralize/stabilize its own site electrostatically, no matter what the ligating ions are. The Eu-NN overlap (ρ = <4f|2s2p>) is assumed to be 0.1, which is physically plausible both as a limit in respect to β, the SOM correction factor to the PCEM, and describes the covalent contribution to the Ln-NN interaction, the latter is the most important contribution of the SOM to the crystal-field theory of lanthanide containing compounds. An eloquent comparison with crystal-field levels of the Eu:LiYF<sub>4</sub> and Eu(btfa)<sub>3</sub>(4,4-bipy)(EtOH) is made. Finally, this paper is, indeed, a very simple tribute to Professor Oscar L. Malta, as an acknowledgement of his deep contribution to the author's apprenticeship about crystal-field theory of systems containing lanthanides.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"21 ","pages":"Article 100279"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147823000530/pdfft?md5=aa93eb8b39b0d6fd7f59e6b0f06f6323&pid=1-s2.0-S2590147823000530-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147823000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The point charge electrostatic model (PCEM) and the simple overlap model (SOM), both purely analytical crystal field models, are being briefly revisited, in order to show the evolution of their application to Eu doped compounds. Calculations are made through the method of equivalent nearest neighbours (MENN), and applied to the Eu(dipivaloylmethanate)31,10-phenanthroline [Eu(DPM)3o-phen] complex, with the aim of discussing the Eu–O and Eu–N interactions. The charge of the Eu ion is calculated using the Batista-Longo improved model (BLIM) to give gBLIM = 3,64e around the Eu-NN midpoint. The 7F1 crystal-field levels and level splitting were satisfactorily reproduced with two charge factors, namely, g1 = 0.495 and g2 = 0.415, assuming the luminescent site in a tetragonal point symmetry slightly distorted. In particular, it is shown that the Eu3+, itself, is satisfied by attracting an amount of charge, which neutralize/stabilize its own site electrostatically, no matter what the ligating ions are. The Eu-NN overlap (ρ = <4f|2s2p>) is assumed to be 0.1, which is physically plausible both as a limit in respect to β, the SOM correction factor to the PCEM, and describes the covalent contribution to the Ln-NN interaction, the latter is the most important contribution of the SOM to the crystal-field theory of lanthanide containing compounds. An eloquent comparison with crystal-field levels of the Eu:LiYF4 and Eu(btfa)3(4,4-bipy)(EtOH) is made. Finally, this paper is, indeed, a very simple tribute to Professor Oscar L. Malta, as an acknowledgement of his deep contribution to the author's apprenticeship about crystal-field theory of systems containing lanthanides.