The Impact of Hydrolysis Regime on the Physical and Mechanical Characteristics of Medium-Density Fiberboards Manufactured from Recycled Wood Fibers

IF 4 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fibers Pub Date : 2023-12-01 DOI:10.3390/fib11120103
V. Savov, P. Antov, Christian Panchev, M. A. R. Lubis, H. R. Taghiyari, S. Lee, Ľ. Krišťák, Martina Todorova
{"title":"The Impact of Hydrolysis Regime on the Physical and Mechanical Characteristics of Medium-Density Fiberboards Manufactured from Recycled Wood Fibers","authors":"V. Savov, P. Antov, Christian Panchev, M. A. R. Lubis, H. R. Taghiyari, S. Lee, Ľ. Krišťák, Martina Todorova","doi":"10.3390/fib11120103","DOIUrl":null,"url":null,"abstract":"Recycling medium-density fiberboards (MDF) presents notable technological challenges, primarily due to the deteriorated properties of the recycled wood fibers obtained from MDF waste. On the other hand, the enhanced valorization of recycled wood in the manufacturing of wood composites represents a viable approach for implementing the principles of a circular bio-economy in the wood-based panel industry and lowering its carbon footprint. This research aimed to investigate and evaluate the impact of the hydrothermal hydrolysis regime on the physical and mechanical properties of recycled MDF panels (rMDF). The hydrolysis temperature was varied from 121 °C (saturated steam pressure 0.2 MPa) to 134 °C (saturated steam pressure 0.3 MPa), and three hydrolysis durations, i.e., 30, 45, and 60 min, were applied. A control MDF panel, manufactured in laboratory conditions from industrial pulp, was used to perform the comparative analyses. It was observed that the degradation of the rMDF panels occurred when the hydrolysis temperature was increased from 121 °C to 134 °C. The research confirmed the deteriorated physical and mechanical properties of rMDF compared to the panels manufactured from natural wood fibers. Markedly, no significant differences were detected between the density profiles of the rMDF panels and the control boards fabricated from industrial pulp. As a result of the study, it was found that the hydrolysis temperature has a more significant effect than the processing time. It was also established that, in the preliminary preparation of the MDF panels into samples with dimensions similar to those of pulp chips, the optimal hydrolysis regime is at a temperature of 121° C (saturated steam pressure 0.2 MPa) and a time of 30 min.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11120103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling medium-density fiberboards (MDF) presents notable technological challenges, primarily due to the deteriorated properties of the recycled wood fibers obtained from MDF waste. On the other hand, the enhanced valorization of recycled wood in the manufacturing of wood composites represents a viable approach for implementing the principles of a circular bio-economy in the wood-based panel industry and lowering its carbon footprint. This research aimed to investigate and evaluate the impact of the hydrothermal hydrolysis regime on the physical and mechanical properties of recycled MDF panels (rMDF). The hydrolysis temperature was varied from 121 °C (saturated steam pressure 0.2 MPa) to 134 °C (saturated steam pressure 0.3 MPa), and three hydrolysis durations, i.e., 30, 45, and 60 min, were applied. A control MDF panel, manufactured in laboratory conditions from industrial pulp, was used to perform the comparative analyses. It was observed that the degradation of the rMDF panels occurred when the hydrolysis temperature was increased from 121 °C to 134 °C. The research confirmed the deteriorated physical and mechanical properties of rMDF compared to the panels manufactured from natural wood fibers. Markedly, no significant differences were detected between the density profiles of the rMDF panels and the control boards fabricated from industrial pulp. As a result of the study, it was found that the hydrolysis temperature has a more significant effect than the processing time. It was also established that, in the preliminary preparation of the MDF panels into samples with dimensions similar to those of pulp chips, the optimal hydrolysis regime is at a temperature of 121° C (saturated steam pressure 0.2 MPa) and a time of 30 min.
水解机制对用回收木纤维制造的中密度纤维板的物理和机械特性的影响
回收中密度纤维板(MDF)提出了显著的技术挑战,主要是由于从中密度纤维板废料中获得的再生木纤维的性能恶化。另一方面,在木材复合材料的制造中提高再生木材的价值是在人造板工业中实施循环生物经济原则和降低其碳足迹的可行方法。本研究旨在调查和评估水热水解制度对再生中密度纤维板(rMDF)物理和机械性能的影响。水解温度为121°C(饱和蒸汽压力0.2 MPa)至134°C(饱和蒸汽压力0.3 MPa),水解时间为30、45和60 min。用工业纸浆在实验室条件下制造的中密度纤维板进行对比分析。结果表明,当水解温度从121℃升高到134℃时,rMDF板发生降解。研究证实,与由天然木纤维制成的板材相比,rMDF的物理和机械性能有所恶化。显然,在rMDF板和由工业纸浆制成的控制板的密度剖面之间没有发现显著差异。研究结果表明,水解温度的影响比加工时间的影响更为显著。研究还发现,在将MDF板初步制备成与纸浆碎块尺寸相近的样品时,最佳水解条件为温度121℃(饱和蒸汽压力0.2 MPa),水解时间30 min。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers
Fibers Engineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍: Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信