{"title":"Predictive modeling for online in-plane shape deviation inspection and compensation of additive manufacturing","authors":"Hao Wang, Hamzeh Al Shraida, Yu Jin","doi":"10.1108/rpj-03-2023-0076","DOIUrl":null,"url":null,"abstract":"\nPurpose\nLimited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.\n\n\nDesign/methodology/approach\nA sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.\n\n\nFindings\nThe proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.\n\n\nPractical implications\nBased on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.\n\n\nOriginality/value\nThis work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":" 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-03-2023-0076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Limited geometric accuracy is one of the major challenges that hinder the wider application of additive manufacturing (AM). This paper aims to predict in-plane shape deviation for online inspection and compensation to prevent error accumulation and improve shape fidelity in AM.
Design/methodology/approach
A sequence-to-sequence model with an attention mechanism (Seq2Seq+Attention) is proposed and implemented to predict subsequent layers or the occluded toolpath deviations after the multiresolution alignment. A shape compensation plan can be performed for the large deviation predicted.
Findings
The proposed Seq2Seq+Attention model is able to provide consistent prediction accuracy. The compensation plan proposed based on the predicted deviation can significantly improve the printing fidelity for those layers detected with large deviations.
Practical implications
Based on the experiments conducted on the knee joint samples, the proposed method outperforms the other three machine learning methods for both subsequent layer and occluded toolpath deviation prediction.
Originality/value
This work fills a research gap for predicting in-plane deviation not only for subsequent layers but also for occluded paths due to the missing scanning measurements. It is also combined with the multiresolution alignment and change point detection to determine the necessity of a compensation plan with updated G-code.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation