An Overview of Audio-Visual Source Separation Using Deep Learning

Noorulhuda Mudhafar Sulaiman, Ahmed Al Tmeme, Mohammed Najah Mahdi
{"title":"An Overview of Audio-Visual Source Separation Using Deep Learning","authors":"Noorulhuda Mudhafar Sulaiman, Ahmed Al Tmeme, Mohammed Najah Mahdi","doi":"10.22153/kej.2023.06.003","DOIUrl":null,"url":null,"abstract":"    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test AVSS systems. In its basic form, this review aims to highlight the growing importance of AVSS in improving the quality of audio signals.","PeriodicalId":7637,"journal":{"name":"Al-Khwarizmi Engineering Journal","volume":" 391","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Khwarizmi Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22153/kej.2023.06.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

    In this article, the research presents a general overview of deep learning-based AVSS (audio-visual source separation) systems. AVSS has achieved exceptional results in a number of areas, including decreasing noise levels, boosting speech recognition, and improving audio quality. The advantages and disadvantages of each deep learning model are discussed throughout the research as it reviews various current experiments on AVSS. The TCD TIMIT dataset (which contains top-notch audio and video recordings created especially for speech recognition tasks) and the Voxceleb dataset (a sizable collection of brief audio-visual clips with human speech) are just a couple of the useful datasets summarized in the paper that can be used to test AVSS systems. In its basic form, this review aims to highlight the growing importance of AVSS in improving the quality of audio signals.
利用深度学习进行视听源分离概述
在本文中,研究提出了基于深度学习的AVSS(视听源分离)系统的总体概述。AVSS在许多领域取得了卓越的成果,包括降低噪音水平、增强语音识别和提高音频质量。在整个研究中讨论了每种深度学习模型的优缺点,并回顾了当前在AVSS上的各种实验。TCD TIMIT数据集(其中包含专门为语音识别任务创建的一流音频和视频记录)和Voxceleb数据集(一个相当大的人类语音简短视听剪辑的集合)只是论文中总结的几个有用的数据集,可用于测试AVSS系统。在其基本形式中,本综述旨在强调AVSS在提高音频信号质量方面日益增长的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信