An Efficient Method for Bangla Handwritten Digit Recognition Using Convolutional Neural Network

Indronil Bhattacharjee
{"title":"An Efficient Method for Bangla Handwritten Digit Recognition Using Convolutional Neural Network","authors":"Indronil Bhattacharjee","doi":"10.47577/technium.v18i.10243","DOIUrl":null,"url":null,"abstract":"Handwritten digit recognition is a fundamental problem in the field of computer vision and pattern recognition. This paper presents a Convolutional Neural Network (CNN) approach for recognizing handwritten Bangla digits. The proposed method utilizes a dataset of handwritten Bangla digit images and trains a CNN model to classify these digits accurately. The dataset is preprocessed to enhance the quality of the images and make them suitable for training the CNN model. The trained model is then tested on a separate test dataset to evaluate its performance in terms of accuracy. With the Ekush: Bangla Handwritten Data - Numerals dataset, we tested our CNN implementation to determine the precision of handwritten characters. According to the test results, 25% of the images using a training set of more than 150,000 images from Ekush dataset had an accuracy of 98.3%.\n","PeriodicalId":388226,"journal":{"name":"Technium: Romanian Journal of Applied Sciences and Technology","volume":"102 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technium: Romanian Journal of Applied Sciences and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47577/technium.v18i.10243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Handwritten digit recognition is a fundamental problem in the field of computer vision and pattern recognition. This paper presents a Convolutional Neural Network (CNN) approach for recognizing handwritten Bangla digits. The proposed method utilizes a dataset of handwritten Bangla digit images and trains a CNN model to classify these digits accurately. The dataset is preprocessed to enhance the quality of the images and make them suitable for training the CNN model. The trained model is then tested on a separate test dataset to evaluate its performance in terms of accuracy. With the Ekush: Bangla Handwritten Data - Numerals dataset, we tested our CNN implementation to determine the precision of handwritten characters. According to the test results, 25% of the images using a training set of more than 150,000 images from Ekush dataset had an accuracy of 98.3%.
利用卷积神经网络识别孟加拉语手写数字的高效方法
手写体数字识别是计算机视觉和模式识别领域的一个基础性问题。本文提出了一种卷积神经网络(CNN)识别手写孟加拉数字的方法。该方法利用手写孟加拉数字图像数据集,训练CNN模型对这些数字进行准确分类。对数据集进行预处理,以提高图像质量,使其适合训练CNN模型。然后在单独的测试数据集上测试训练好的模型,以评估其准确性方面的性能。使用Ekush:孟加拉语手写数据-数字数据集,我们测试了我们的CNN实现来确定手写字符的精度。根据测试结果,使用来自Ekush数据集的超过15万张图像的训练集,25%的图像准确率为98.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信