Justin Myles, Nicolas Castaño, Sungu Kim, Zhenyun Zhu, Sindy K.Y. Tang
{"title":"Parallelized Immunomagnetic Isolation of Basophils Directly from Whole Blood","authors":"Justin Myles, Nicolas Castaño, Sungu Kim, Zhenyun Zhu, Sindy K.Y. Tang","doi":"10.1002/anbr.202300122","DOIUrl":null,"url":null,"abstract":"<p>Basophils are the rarest circulating white blood cells (WBCs), but they play important roles in allergic disorders and other diseases. To enhance diagnostic capabilities, it would be desirable to isolate and analyze basophils efficiently from small blood samples. In 100 μL of whole blood, there are typically ≈10<sup>3</sup> basophils, outnumbered by ≈10<sup>5</sup> WBCs and ≈10<sup>8</sup> red blood cells (RBCs). Basophils’ low abundance has therefore presented a significant challenge in their isolation from whole blood. Conventional in-bulk basophil isolation methods require lengthy processing steps and cannot work with small volumes of blood. Herein, a parallelized integrated basophil isolation device (pi-BID) is reported for the negative immunomagnetic selection of basophils directly from four samples of 100 μL of whole blood, in parallel, within 14 min including sample preparation time. The pi-BID interfaces directly with standard sample tubes, and uses a single pressure source to drive the flow in parallel microfluidic channels. Compared with conventional in-bulk basophil isolation, the pi-BID is >3× faster, and has higher purity (≈93%) and similar recovery (≈67%). Compared with other microfluidic devices for the immunomagnetic isolation of WBC subtypes, the pi-BID achieves 10× higher enrichment of target cells from whole blood, with no prior removal of RBCs necessary.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 2","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300122","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Basophils are the rarest circulating white blood cells (WBCs), but they play important roles in allergic disorders and other diseases. To enhance diagnostic capabilities, it would be desirable to isolate and analyze basophils efficiently from small blood samples. In 100 μL of whole blood, there are typically ≈103 basophils, outnumbered by ≈105 WBCs and ≈108 red blood cells (RBCs). Basophils’ low abundance has therefore presented a significant challenge in their isolation from whole blood. Conventional in-bulk basophil isolation methods require lengthy processing steps and cannot work with small volumes of blood. Herein, a parallelized integrated basophil isolation device (pi-BID) is reported for the negative immunomagnetic selection of basophils directly from four samples of 100 μL of whole blood, in parallel, within 14 min including sample preparation time. The pi-BID interfaces directly with standard sample tubes, and uses a single pressure source to drive the flow in parallel microfluidic channels. Compared with conventional in-bulk basophil isolation, the pi-BID is >3× faster, and has higher purity (≈93%) and similar recovery (≈67%). Compared with other microfluidic devices for the immunomagnetic isolation of WBC subtypes, the pi-BID achieves 10× higher enrichment of target cells from whole blood, with no prior removal of RBCs necessary.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.