Fekete-Szegö Inequality for a Subclass of Bi-univalent Functions by Applying Sălăgean q-Differential Operator

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Dayana Chang, A. Janteng
{"title":"Fekete-Szegö Inequality for a Subclass of Bi-univalent Functions by Applying Sălăgean q-Differential Operator","authors":"Dayana Chang, A. Janteng","doi":"10.11113/mjfas.v19n6.3039","DOIUrl":null,"url":null,"abstract":"Throughout this study, we propose a new subclass of bi-univalent functions by applying Sălăgean q-differential operator and denoted as LΣ_q^k (λ,ϕ). Further, we acquired the values of the initial coefficients |a_2 | and |a_3 | for functions f∈LΣ_q^k (λ,ϕ) which yield to this study’s preliminary result. Subsequently, the preliminary result was applied to obtain the upper bound of Fekete-Szegö inequality, |a_3-ρa_2^2 |, for functions f∈LΣ_q^k (λ,ϕ).","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"78 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n6.3039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout this study, we propose a new subclass of bi-univalent functions by applying Sălăgean q-differential operator and denoted as LΣ_q^k (λ,ϕ). Further, we acquired the values of the initial coefficients |a_2 | and |a_3 | for functions f∈LΣ_q^k (λ,ϕ) which yield to this study’s preliminary result. Subsequently, the preliminary result was applied to obtain the upper bound of Fekete-Szegö inequality, |a_3-ρa_2^2 |, for functions f∈LΣ_q^k (λ,ϕ).
应用 Sălăgean q 微分算子的双等价函数子类的 Fekete-Szegö 不等式
在整个研究中,我们提出了一个新的双单价函数子类,通过应用s13l13gean q-微分算子,表示为LΣ_q^k (λ,ϕ)。此外,我们获得了函数f∈LΣ_q^k (λ,ϕ)的初始系数|a_2 |和|a_3 |的值,从而产生了本研究的初步结果。随后,将初步结果应用于函数f∈LΣ_q^k (λ,ϕ)的Fekete-Szegö不等式|a_3-ρa_2^2 |的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信