Natural transformants of Camellia section Thea

Q3 Agricultural and Biological Sciences
Ke Chen, P. Zhurbenko, Lavrentii G. Danilov, T. Matveeva, Léon Otten
{"title":"Natural transformants of Camellia section Thea","authors":"Ke Chen, P. Zhurbenko, Lavrentii G. Danilov, T. Matveeva, Léon Otten","doi":"10.17816/ecogen568588","DOIUrl":null,"url":null,"abstract":"Horizontal gene transfer (HGT) plays an important role in plant evolution and plant development. Agrobacterium-mediated gene transfer leads to the formation of crown galls or hairy roots, due to expression of transferred T-DNA genes. Spontaneous regeneration of transformed cells can produce natural transformants carrying cellular T-DNA (cT-DNA) sequences of bacterial origin. HGT from Agrobacterium to dicots is remarkably widespread. The production of naturally genome modified plants could play a role in plant evolution and environment. \nAmong these natural GMOs (nGMOs) there are the tea plants. Camellia sinensis var. sinensis cv. Shuchazao contains a single 5.5 kb cT-DNA fragment organized as imperfect inverted repeat with three inactive genes. 142 Camellia accessions, belonging to 10 of 11 species of the section Thea, were studied for the presence of cT-DNA alleles. All of them contain the cT-DNA insert, indicating that they are resulted from the single transformed event. Allele phasing showed that 82 accessions were heterozygous for T-DNA alleles, 60 others were homozygous. A phylogenetic analysis of all found alleles showed existence of two separate groups of them, further divided into subgroups. The alleles of the different Camellia species were distributed mosaically over groups, and different species showed very similar T-DNA alleles. This indicates that the taxonomy of Thea requires revision. The nucleotide divergence of the imperfect cT-DNA repeats indicates that the age of cT-DNA insertion is about 15 mya, which is earlier then emergence of section Thea [1]. We present a working model for the origin and evolution of nGMO plants derived from allogamous transformants.","PeriodicalId":11431,"journal":{"name":"Ecological genetics","volume":"17 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/ecogen568588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Horizontal gene transfer (HGT) plays an important role in plant evolution and plant development. Agrobacterium-mediated gene transfer leads to the formation of crown galls or hairy roots, due to expression of transferred T-DNA genes. Spontaneous regeneration of transformed cells can produce natural transformants carrying cellular T-DNA (cT-DNA) sequences of bacterial origin. HGT from Agrobacterium to dicots is remarkably widespread. The production of naturally genome modified plants could play a role in plant evolution and environment. Among these natural GMOs (nGMOs) there are the tea plants. Camellia sinensis var. sinensis cv. Shuchazao contains a single 5.5 kb cT-DNA fragment organized as imperfect inverted repeat with three inactive genes. 142 Camellia accessions, belonging to 10 of 11 species of the section Thea, were studied for the presence of cT-DNA alleles. All of them contain the cT-DNA insert, indicating that they are resulted from the single transformed event. Allele phasing showed that 82 accessions were heterozygous for T-DNA alleles, 60 others were homozygous. A phylogenetic analysis of all found alleles showed existence of two separate groups of them, further divided into subgroups. The alleles of the different Camellia species were distributed mosaically over groups, and different species showed very similar T-DNA alleles. This indicates that the taxonomy of Thea requires revision. The nucleotide divergence of the imperfect cT-DNA repeats indicates that the age of cT-DNA insertion is about 15 mya, which is earlier then emergence of section Thea [1]. We present a working model for the origin and evolution of nGMO plants derived from allogamous transformants.
山茶科茶属植物的自然转化体
水平基因转移(HGT)在植物进化和发育过程中起着重要作用。农杆菌介导的基因转移导致形成冠瘿或毛状根,由于转移的T-DNA基因的表达。转化细胞的自发再生可以产生携带细菌来源的细胞T-DNA (cT-DNA)序列的自然转化体。从农杆菌到真菌的HGT分布非常广泛。自然基因组修饰植物的产生可以在植物进化和环境中发挥作用。在这些天然转基因生物(nGMOs)中,有茶树。山茶变种山茶Shuchazao含有一个5.5 kb的cT-DNA片段,其结构为不完美的反向重复序列,包含三个无活性基因。对茶属11个种中的10个品种的142份茶花材料进行了cT-DNA等位基因的研究。它们都含有cT-DNA插入,表明它们是由单一转化事件产生的。等位基因相位分析表明,T-DNA等位基因杂合的有82份,纯合的有60份。对所有发现的等位基因的系统发育分析表明,它们存在两个独立的群体,进一步划分为亚群。不同种茶树的等位基因在群体间呈镶嵌状分布,不同种茶树的T-DNA等位基因非常相似。这表明Thea的分类法需要修订。不完善的cT-DNA重复序列的核苷酸分化表明,cT-DNA插入的年龄约为15 mya,早于Thea片段的出现[1]。我们提出了一个工作模型的起源和演化的nGMO植物衍生自异体转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological genetics
Ecological genetics Environmental Science-Ecology
CiteScore
0.90
自引率
0.00%
发文量
22
期刊介绍: The journal Ecological genetics is an international journal which accepts for consideration original manuscripts that reflect the results of field and experimental studies, and fundamental research of broad conceptual and/or comparative context corresponding to the profile of the Journal. Once a year, the editorial Board reviews and, if necessary, corrects the rules for authors and the journal rubrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信