Nursyafreena Attan, Desmilia Putri Ramadhani, Asmi Munadhiroh, Hadi Nur
{"title":"What is the Effect of a Magnetic Field on Dye Adsorption onto Graphite Carbon?","authors":"Nursyafreena Attan, Desmilia Putri Ramadhani, Asmi Munadhiroh, Hadi Nur","doi":"10.11113/mjfas.v19n6.3243","DOIUrl":null,"url":null,"abstract":"This research explores the impact of magnetic fields on dye adsorption onto graphite carbon, utilizing electric currents to generate varying magnetic field strengths, as determined by the Biot-Savart law. The study demonstrates that even with small current magnitudes typically used in physics laboratories, the generated magnetic fields significantly influence dye adsorption. Through experiments with currents ranging from 1.5 A to 7.5 A, resulting in magnetic fields from 1.54 µT to 4.63 µT, we observed enhanced adsorption for congo red, methylene blue, and methyl orange. In contrast, phenol red exhibited a unique desorption pattern due to electrostatic repulsion. Temperature variations were noted but were considered to have a negligible effect on the adsorption behavior. The findings highlight the crucial role of magnetic energy density and the charge of dye molecules in the adsorption process, leading to the conclusion that magnetic fields, indeed, play a significant role in influencing dye adsorption onto graphite carbon, with potential applications in environmental conservation and industrial waste management.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"9 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n6.3243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the impact of magnetic fields on dye adsorption onto graphite carbon, utilizing electric currents to generate varying magnetic field strengths, as determined by the Biot-Savart law. The study demonstrates that even with small current magnitudes typically used in physics laboratories, the generated magnetic fields significantly influence dye adsorption. Through experiments with currents ranging from 1.5 A to 7.5 A, resulting in magnetic fields from 1.54 µT to 4.63 µT, we observed enhanced adsorption for congo red, methylene blue, and methyl orange. In contrast, phenol red exhibited a unique desorption pattern due to electrostatic repulsion. Temperature variations were noted but were considered to have a negligible effect on the adsorption behavior. The findings highlight the crucial role of magnetic energy density and the charge of dye molecules in the adsorption process, leading to the conclusion that magnetic fields, indeed, play a significant role in influencing dye adsorption onto graphite carbon, with potential applications in environmental conservation and industrial waste management.