Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries

IF 0.7 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Chuang Qi, Zhenyan Liu, Chunjing Lin, Yuanzhi Hu
{"title":"Review of Gas Generation Behavior during Thermal Runaway of\n Lithium-Ion Batteries","authors":"Chuang Qi, Zhenyan Liu, Chunjing Lin, Yuanzhi Hu","doi":"10.4271/14-13-03-0021","DOIUrl":null,"url":null,"abstract":"Due to the limitations of current battery manufacturing processes, integration\n technology, and operating conditions, the large-scale application of lithium-ion\n batteries in the fields of energy storage and electric vehicles has led to an\n increasing number of fire accidents. When a lithium-ion battery undergoes\n thermal runaway, it undergoes complex and violent reactions, which can lead to\n combustion and explosion, accompanied by the production of a large amount of\n flammable and toxic gases. These flammable gases continue to undergo chemical\n reactions at high temperatures, producing complex secondary combustion products.\n This article systematically summarizes the gas generation characteristics of\n different types and states of batteries under different thermal runaway\n triggering conditions. And based on this, proposes the key research directions\n for the gas generation characteristics of lithium-ion batteries.","PeriodicalId":36261,"journal":{"name":"SAE International Journal of Electrified Vehicles","volume":"35 25","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Electrified Vehicles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/14-13-03-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the limitations of current battery manufacturing processes, integration technology, and operating conditions, the large-scale application of lithium-ion batteries in the fields of energy storage and electric vehicles has led to an increasing number of fire accidents. When a lithium-ion battery undergoes thermal runaway, it undergoes complex and violent reactions, which can lead to combustion and explosion, accompanied by the production of a large amount of flammable and toxic gases. These flammable gases continue to undergo chemical reactions at high temperatures, producing complex secondary combustion products. This article systematically summarizes the gas generation characteristics of different types and states of batteries under different thermal runaway triggering conditions. And based on this, proposes the key research directions for the gas generation characteristics of lithium-ion batteries.
锂离子电池热失控期间气体生成行为回顾
由于目前电池制造工艺、集成技术和使用条件的限制,锂离子电池在储能和电动汽车领域的大规模应用导致火灾事故越来越多。当锂离子电池发生热失控时,会发生复杂而剧烈的反应,可能导致燃烧和爆炸,同时会产生大量易燃有毒气体。这些可燃气体在高温下继续发生化学反应,产生复杂的二次燃烧产物。系统总结了不同类型、不同状态电池在不同热失控触发条件下的产气特性。并在此基础上,提出了锂离子电池产气特性的重点研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SAE International Journal of Electrified Vehicles
SAE International Journal of Electrified Vehicles Engineering-Automotive Engineering
CiteScore
1.40
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信