{"title":"PerfECT Design Tool: Electric Vehicle Modelling and Experimental Validation","authors":"Henrique de Carvalho Pinheiro","doi":"10.3390/wevj14120337","DOIUrl":null,"url":null,"abstract":"This article addresses a common issue in the design of battery electric vehicles (BEVs) by introducing a comprehensive methodology for the modeling and simulation of BEVs, referred to as the “PerfECT Design Tool”. The primary objective of this study is to provide engineers and researchers with a robust and streamlined approach for the early stages of electric vehicle (EV) design, offering valuable insights into the performance, energy consumption, current flow, and thermal behavior of these advanced automotive systems. Recognizing the complex nature of contemporary EVs, the study highlights the need for efficient design tools that facilitate decision-making during the conceptual phases of development. The PerfECT Design Tool is presented as a multi-level framework, divided into four logically sequential modules: Performance, Energy, Currents, and Temperature. These modules are underpinned by sound theoretical foundations and are implemented using a combination of MATLAB/Simulink and the vehicle dynamics software VI-CRT. The research culminates in the validation of the model through a series of experimental maneuvers conducted with a Tesla Model 3, establishing its accuracy in representing the mechanical, electrical, and thermal behavior of BEVs. The study’s main findings underscore the viability of the design tool as an asset in the initial phases of BEV design. Beyond its primary application, the tool holds promise for broader utilization, including the development of active control systems, advanced driver assistance systems (ADAS), and solutions for autonomous driving within the domain of electric vehicles.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"67 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14120337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article addresses a common issue in the design of battery electric vehicles (BEVs) by introducing a comprehensive methodology for the modeling and simulation of BEVs, referred to as the “PerfECT Design Tool”. The primary objective of this study is to provide engineers and researchers with a robust and streamlined approach for the early stages of electric vehicle (EV) design, offering valuable insights into the performance, energy consumption, current flow, and thermal behavior of these advanced automotive systems. Recognizing the complex nature of contemporary EVs, the study highlights the need for efficient design tools that facilitate decision-making during the conceptual phases of development. The PerfECT Design Tool is presented as a multi-level framework, divided into four logically sequential modules: Performance, Energy, Currents, and Temperature. These modules are underpinned by sound theoretical foundations and are implemented using a combination of MATLAB/Simulink and the vehicle dynamics software VI-CRT. The research culminates in the validation of the model through a series of experimental maneuvers conducted with a Tesla Model 3, establishing its accuracy in representing the mechanical, electrical, and thermal behavior of BEVs. The study’s main findings underscore the viability of the design tool as an asset in the initial phases of BEV design. Beyond its primary application, the tool holds promise for broader utilization, including the development of active control systems, advanced driver assistance systems (ADAS), and solutions for autonomous driving within the domain of electric vehicles.