An emulation-based approach for interrogating reactive transport models

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
A. Fotherby, H. Bradbury, J. Druhan, A. Turchyn
{"title":"An emulation-based approach for interrogating reactive transport models","authors":"A. Fotherby, H. Bradbury, J. Druhan, A. Turchyn","doi":"10.5194/gmd-16-7059-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We present an emulation-based approach to understand the interactions among different chemical and biological processes modelled in environmental reactive transport models (RTMs) and explore how the parameterisation of these processes influences the results of multi-component RTMs. We utilise a previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 mineral reactions, and 2 biologically mediated reactions; this RTM describes bio-stimulation using sediment from a contaminated aquifer. We choose a subset of the input parameters to vary over a range of values. The result is the construction of a new dataset that describes the model behaviour over a range of environmental conditions. Using this dataset to train a statistical model creates an emulator of the underlying RTM. This is a condensed representation of the original RTM that facilitates rapid exploration of a broad range of environmental conditions and sensitivities. As an illustration of this approach, we use the emulator to explore how varying the boundary conditions in the RTM describing the aquifer impacts the rates and volumes of mineral precipitation. A key result of this work is the recognition of an unanticipated dependency of pyrite precipitation on pCO2 in the injection fluid due to the stoichiometry of the microbially mediated sulfate reduction reaction. This complex relationship was made apparent by the emulator, while the underlying RTM was not specifically constructed to create such a feedback. We argue that this emulation approach to sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in geochemical systems and for designing experiments to optimise environmental remediation. Finally, we demonstrate that this approach can maximise specific mineral precipitation or dissolution reactions by using the emulator to find local maxima, which can be widely applied in environmental systems.\n","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"55 11","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-16-7059-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We present an emulation-based approach to understand the interactions among different chemical and biological processes modelled in environmental reactive transport models (RTMs) and explore how the parameterisation of these processes influences the results of multi-component RTMs. We utilise a previously published RTM consisting of 20 primary species, 20 secondary complexes, 17 mineral reactions, and 2 biologically mediated reactions; this RTM describes bio-stimulation using sediment from a contaminated aquifer. We choose a subset of the input parameters to vary over a range of values. The result is the construction of a new dataset that describes the model behaviour over a range of environmental conditions. Using this dataset to train a statistical model creates an emulator of the underlying RTM. This is a condensed representation of the original RTM that facilitates rapid exploration of a broad range of environmental conditions and sensitivities. As an illustration of this approach, we use the emulator to explore how varying the boundary conditions in the RTM describing the aquifer impacts the rates and volumes of mineral precipitation. A key result of this work is the recognition of an unanticipated dependency of pyrite precipitation on pCO2 in the injection fluid due to the stoichiometry of the microbially mediated sulfate reduction reaction. This complex relationship was made apparent by the emulator, while the underlying RTM was not specifically constructed to create such a feedback. We argue that this emulation approach to sensitivity analysis for RTMs may be useful in discovering such new coupled sensitives in geochemical systems and for designing experiments to optimise environmental remediation. Finally, we demonstrate that this approach can maximise specific mineral precipitation or dissolution reactions by using the emulator to find local maxima, which can be widely applied in environmental systems.
基于仿真的反应迁移模型查询方法
摘要。我们提出了一种基于仿真的方法来理解环境反应转运模型(RTMs)中不同化学和生物过程之间的相互作用,并探索这些过程的参数化如何影响多组分RTMs的结果。我们利用先前发表的RTM,包括20个主要物质,20个次级配合物,17个矿物反应和2个生物介导的反应;该RTM描述了利用受污染含水层的沉积物进行生物刺激。我们选择输入参数的一个子集,使其在一个值范围内变化。结果是构建了一个新的数据集,该数据集描述了模型在一系列环境条件下的行为。使用此数据集训练统计模型将创建底层RTM的仿真器。这是原始RTM的浓缩表示,有助于快速探索广泛的环境条件和敏感性。为了说明这种方法,我们使用模拟器来探索描述含水层的RTM中边界条件的变化如何影响矿物降水的速率和体积。这项工作的一个关键结果是由于微生物介导的硫酸盐还原反应的化学计量学,认识到注射液中黄铁矿沉淀对pCO2的意外依赖。这种复杂的关系是通过模拟器显示出来的,而底层的RTM并没有专门构建来创建这样的反馈。我们认为,这种模拟rtm灵敏度分析的方法可能有助于在地球化学系统中发现这种新的耦合灵敏度,并设计实验以优化环境修复。最后,我们证明了这种方法可以通过使用模拟器找到局部最大值来最大化特定矿物沉淀或溶解反应,这可以广泛应用于环境系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信