{"title":"Effects of cover crops on hatching of and root penetration by Heterodera glycines","authors":"Kamal Neupane, Guiping Yan","doi":"10.1163/15685411-bja10299","DOIUrl":null,"url":null,"abstract":"\nThe use of non-host cover crops can be a viable strategy for managing soybean cyst nematode (SCN) Heterodera glycines. Cover crops may affect SCN biology and reduce populations by acting as trap crops that promote the hatching and/or penetration by second-stage juveniles (J2) without supporting their development. Two growth chamber experiments were conducted to assess ten cover crops for their impacts on SCN hatching and penetration into the roots. For each experiment, with four replications per treatment, crops were planted in naturally-infested soil in two separate sets to be harvested 15 and 30 days after planting (DAP). SCN susceptible soybean ‘Barnes’ and non-planted natural soil (fallow) were used as controls. Faba bean ‘Petite’, a non-host of SCN, induced the greatest hatching among the cover crops and was statistically similar to soybean. Winter rye ‘ND Dylan’ also induced significant hatching compared to fallow. Root staining revealed that the highest number of J2 penetrated the faba bean roots at 15 DAP, followed by soybean and winter rye. While J2 penetrated all tested crops, they completed their development to become adult females only in soybean and turnip. Soybean cyst nematode development to adult females did not occur in faba bean, and the number of SCN inside the faba bean roots 30 DAP was significantly lower than at 15 DAP and also lower than in soybean. These results suggest that the faba bean affects SCN biology and has the greatest potential to act as a trap crop for managing SCN.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15685411-bja10299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of non-host cover crops can be a viable strategy for managing soybean cyst nematode (SCN) Heterodera glycines. Cover crops may affect SCN biology and reduce populations by acting as trap crops that promote the hatching and/or penetration by second-stage juveniles (J2) without supporting their development. Two growth chamber experiments were conducted to assess ten cover crops for their impacts on SCN hatching and penetration into the roots. For each experiment, with four replications per treatment, crops were planted in naturally-infested soil in two separate sets to be harvested 15 and 30 days after planting (DAP). SCN susceptible soybean ‘Barnes’ and non-planted natural soil (fallow) were used as controls. Faba bean ‘Petite’, a non-host of SCN, induced the greatest hatching among the cover crops and was statistically similar to soybean. Winter rye ‘ND Dylan’ also induced significant hatching compared to fallow. Root staining revealed that the highest number of J2 penetrated the faba bean roots at 15 DAP, followed by soybean and winter rye. While J2 penetrated all tested crops, they completed their development to become adult females only in soybean and turnip. Soybean cyst nematode development to adult females did not occur in faba bean, and the number of SCN inside the faba bean roots 30 DAP was significantly lower than at 15 DAP and also lower than in soybean. These results suggest that the faba bean affects SCN biology and has the greatest potential to act as a trap crop for managing SCN.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.